January  2018, 23(1): 263-274. doi: 10.3934/dcdsb.2018018

Optimal control problem for a viscoelastic beam and its galerkin approximation

1. 

Centre of Mathematics and Physics, Lodz University of Technology, Al.Politechniki 11, 90-924 Lodz, Poland

2. 

Institute of Mathematics, Lodz University of Technology, ul. Wolczanska 215, 90-924 Lodz, Poland

* Corresponding author: zdzislaw.stempien@p.lodz.pl

Received  November 2016 Revised  May 2017 Published  January 2018

This paper is concerned with the optimal control problem of the vibrations of a viscoelastic beam, which is governed by a nonlinear partial differential equation. We discuss the initial-boundary problem for the cases when the ends of the beam are clamped or hinged. We define the weak solution of this initial-boundary problem. Our control problem is formulated by minimization of a functional where the state of a system is the solution of viscoelastic beam equation. We use the Galerkin method to approximate the solution of our control problem with respect to a spatial variable. Based on the finite dimensional approximation we prove that as the discretization parameters tend to zero then the weak accumulation points of the optimal solutions of the discrete family control problems exist and each of these points is the solution of the original optimal control problem.

Citation: Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018
References:
[1]

A. S. AcklehH. T. Banks and G. A. Pinter, A Nonlinear Beam Equation, Appl. Math. Letters, 15 (2002), 381-387. doi: 10.1016/S0893-9659(01)00147-1.

[2]

J. Ahn and D. E. Stewart, A viscoelastic Timoshenko beam with dynamic frictionless impact, Discr. Cont. Dynam. Sys. B, 12 (2009), 1-22. doi: 10.3934/dcdsb.2009.12.1.

[3]

K. T. AndrewsY. DumontM. F. M'BengueJ. Purcell and M. Shillor, Analysis and simulations of~nonlinear elastic dynamic beam, ZAMP, 63 (2012), 1005-1019. doi: 10.1007/s00033-012-0233-9.

[4]

N. AradaE. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comp. Optim. Applic., 23 (2002), 201-229. doi: 10.1023/A:1020576801966.

[5]

J. M. Ball, Stability theory for an extensible beam, J. Differ. Equat., 14 (1973), 399-418. doi: 10.1016/0022-0396(73)90056-9.

[6]

J. M. Ball, Initial-boundary value problems for an extensible beam, J.Math.Anal. Appl., 42 (1973), 61-90. doi: 10.1016/0022-247X(73)90121-2.

[7]

M. BarboteuM. Sofonea and D. Tiba, The control variational method for beams in contact with deformable obstacles, ZAMM, 92 (2012), 25-40. doi: 10.1002/zamm.201000161.

[8]

A. Dębinska-NagórskaA. Just and Z. Stempień, Approximation of an optimal control problem governed by a differential parabolic inclusion, Optim., 59 (2010), 707-715. doi: 10.1080/02331930802434807.

[9]

A. Dębinska-NagórskaA. Just and Z. Stempień, Galerkin method for optimal control of~second-order evolution equations, Math. Meth. Appl. Sci., 27 (2004), 221-230. doi: 10.1002/mma.452.

[10]

Z. Denkowski, S. Migórski and N. Papageorgiou, Nonlinear Analysis. Applications Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

[11]

E. Feireisl and L. Herrman, Oscillations of a nonlinearly dumped extensible beam, Appl. Math., 37 (1992), 469-478.

[12]

M. Galewski, On the optimal control problem governed by the nonlinear elastic beam equation, Appl. Math. Comput., 203 (2008), 916-920. doi: 10.1016/j.amc.2008.04.022.

[13]

I. Hlaváček and J. Lovišek, Optimal control of semi-coercive variational inequalities with application to optimal design of beams and plates, ZAMM, 78 (1998), 405-417. doi: 10.1002/(SICI)1521-4001(199806)78:6<405::AID-ZAMM405>3.0.CO;2-Z.

[14]

J. Hwang, Optimal control problems for an extensible beam equation, J. Math. Anal. Appl., 353 (2009), 436-448. doi: 10.1016/j.jmaa.2008.12.020.

[15]

A. Just and Z. Stempień, Pareto optimal control problem and its Galerkin approximation for a nonlinear one-dimensional extensible beam equation, Opuscula Math., 36 (2016), 239-252. doi: 10.7494/OpMath.2016.36.2.239.

[16]

I. Lasiecka, Galerkin approximation of infinite-dimensional compensators for flexible structure with unbounded control action, Acta Appl. Math., 28 (1992), 101-133. doi: 10.1007/BF00047552.

[17]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag, Berlin/Heidelberg/New York, 1971, (Russian Edition, Mir, Moscow 1972).

[18]

M. L. Oliveira and O. A. Lima, Exponential decay of the solutions of the beam system, Nonlinear Anal., 42 (2000), 1271-1291. doi: 10.1016/S0362-546X(99)00155-8.

[19]

D. C. Pereira, Existence, uniqueness and asymptotic behaviour for solutions of the nonlinear beam equation, Nonlinear Anal., 14 (1990), 613-623. doi: 10.1016/0362-546X(90)90041-E.

[20]

I. SadekM. Abukhaled and T. Abdulrub, Coupled Galerkin and parametrization methods for optimal control of discretely connected parallel beams, Appl. Math. Modelling, 34 (2010), 3949-3957. doi: 10.1016/j.apm.2010.03.031.

[21]

F. Tröltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems -strong convergence of optimal controls, Appl. Math. Optimz., 29 (1994), 309-329. doi: 10.1007/BF01189480.

[22]

E. Zeidler, Nonlinear Functional Analysis and its Applications Ⅱ Springer-Verlag, Berlin, 1990. doi: 10.1007/978-1-4612-0985-0.

show all references

References:
[1]

A. S. AcklehH. T. Banks and G. A. Pinter, A Nonlinear Beam Equation, Appl. Math. Letters, 15 (2002), 381-387. doi: 10.1016/S0893-9659(01)00147-1.

[2]

J. Ahn and D. E. Stewart, A viscoelastic Timoshenko beam with dynamic frictionless impact, Discr. Cont. Dynam. Sys. B, 12 (2009), 1-22. doi: 10.3934/dcdsb.2009.12.1.

[3]

K. T. AndrewsY. DumontM. F. M'BengueJ. Purcell and M. Shillor, Analysis and simulations of~nonlinear elastic dynamic beam, ZAMP, 63 (2012), 1005-1019. doi: 10.1007/s00033-012-0233-9.

[4]

N. AradaE. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comp. Optim. Applic., 23 (2002), 201-229. doi: 10.1023/A:1020576801966.

[5]

J. M. Ball, Stability theory for an extensible beam, J. Differ. Equat., 14 (1973), 399-418. doi: 10.1016/0022-0396(73)90056-9.

[6]

J. M. Ball, Initial-boundary value problems for an extensible beam, J.Math.Anal. Appl., 42 (1973), 61-90. doi: 10.1016/0022-247X(73)90121-2.

[7]

M. BarboteuM. Sofonea and D. Tiba, The control variational method for beams in contact with deformable obstacles, ZAMM, 92 (2012), 25-40. doi: 10.1002/zamm.201000161.

[8]

A. Dębinska-NagórskaA. Just and Z. Stempień, Approximation of an optimal control problem governed by a differential parabolic inclusion, Optim., 59 (2010), 707-715. doi: 10.1080/02331930802434807.

[9]

A. Dębinska-NagórskaA. Just and Z. Stempień, Galerkin method for optimal control of~second-order evolution equations, Math. Meth. Appl. Sci., 27 (2004), 221-230. doi: 10.1002/mma.452.

[10]

Z. Denkowski, S. Migórski and N. Papageorgiou, Nonlinear Analysis. Applications Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

[11]

E. Feireisl and L. Herrman, Oscillations of a nonlinearly dumped extensible beam, Appl. Math., 37 (1992), 469-478.

[12]

M. Galewski, On the optimal control problem governed by the nonlinear elastic beam equation, Appl. Math. Comput., 203 (2008), 916-920. doi: 10.1016/j.amc.2008.04.022.

[13]

I. Hlaváček and J. Lovišek, Optimal control of semi-coercive variational inequalities with application to optimal design of beams and plates, ZAMM, 78 (1998), 405-417. doi: 10.1002/(SICI)1521-4001(199806)78:6<405::AID-ZAMM405>3.0.CO;2-Z.

[14]

J. Hwang, Optimal control problems for an extensible beam equation, J. Math. Anal. Appl., 353 (2009), 436-448. doi: 10.1016/j.jmaa.2008.12.020.

[15]

A. Just and Z. Stempień, Pareto optimal control problem and its Galerkin approximation for a nonlinear one-dimensional extensible beam equation, Opuscula Math., 36 (2016), 239-252. doi: 10.7494/OpMath.2016.36.2.239.

[16]

I. Lasiecka, Galerkin approximation of infinite-dimensional compensators for flexible structure with unbounded control action, Acta Appl. Math., 28 (1992), 101-133. doi: 10.1007/BF00047552.

[17]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag, Berlin/Heidelberg/New York, 1971, (Russian Edition, Mir, Moscow 1972).

[18]

M. L. Oliveira and O. A. Lima, Exponential decay of the solutions of the beam system, Nonlinear Anal., 42 (2000), 1271-1291. doi: 10.1016/S0362-546X(99)00155-8.

[19]

D. C. Pereira, Existence, uniqueness and asymptotic behaviour for solutions of the nonlinear beam equation, Nonlinear Anal., 14 (1990), 613-623. doi: 10.1016/0362-546X(90)90041-E.

[20]

I. SadekM. Abukhaled and T. Abdulrub, Coupled Galerkin and parametrization methods for optimal control of discretely connected parallel beams, Appl. Math. Modelling, 34 (2010), 3949-3957. doi: 10.1016/j.apm.2010.03.031.

[21]

F. Tröltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems -strong convergence of optimal controls, Appl. Math. Optimz., 29 (1994), 309-329. doi: 10.1007/BF01189480.

[22]

E. Zeidler, Nonlinear Functional Analysis and its Applications Ⅱ Springer-Verlag, Berlin, 1990. doi: 10.1007/978-1-4612-0985-0.

[1]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[2]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[3]

Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735

[4]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[5]

Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197

[6]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[7]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[8]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[9]

K. T. Andrews, M. F. M'Bengue, Meir Shillor. Vibrations of a nonlinear dynamic beam between two stops. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 23-38. doi: 10.3934/dcdsb.2009.12.23

[10]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[11]

Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961

[12]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[13]

Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029

[14]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[15]

Aaron A. Allen, Scott W. Hansen. Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1279-1292. doi: 10.3934/dcdsb.2010.14.1279

[16]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[17]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[18]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[19]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[20]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control & Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (22)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]