# American Institute of Mathematical Sciences

January  2018, 23(1): 263-274. doi: 10.3934/dcdsb.2018018

## Optimal control problem for a viscoelastic beam and its galerkin approximation

 1 Centre of Mathematics and Physics, Lodz University of Technology, Al.Politechniki 11, 90-924 Lodz, Poland 2 Institute of Mathematics, Lodz University of Technology, ul. Wolczanska 215, 90-924 Lodz, Poland

* Corresponding author: zdzislaw.stempien@p.lodz.pl

Received  November 2016 Revised  May 2017 Published  January 2018

This paper is concerned with the optimal control problem of the vibrations of a viscoelastic beam, which is governed by a nonlinear partial differential equation. We discuss the initial-boundary problem for the cases when the ends of the beam are clamped or hinged. We define the weak solution of this initial-boundary problem. Our control problem is formulated by minimization of a functional where the state of a system is the solution of viscoelastic beam equation. We use the Galerkin method to approximate the solution of our control problem with respect to a spatial variable. Based on the finite dimensional approximation we prove that as the discretization parameters tend to zero then the weak accumulation points of the optimal solutions of the discrete family control problems exist and each of these points is the solution of the original optimal control problem.

Citation: Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018
##### References:

show all references

##### References:
 [1] Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783 [2] M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337 [3] Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735 [4] Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21 [5] Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197 [6] Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1 [7] Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 [8] Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721 [9] K. T. Andrews, M. F. M'Bengue, Meir Shillor. Vibrations of a nonlinear dynamic beam between two stops. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 23-38. doi: 10.3934/dcdsb.2009.12.23 [10] Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034 [11] Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261 [12] Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961 [13] Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051 [14] Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029 [15] David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305 [16] Aaron A. Allen, Scott W. Hansen. Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1279-1292. doi: 10.3934/dcdsb.2010.14.1279 [17] Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105 [18] Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447 [19] Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027 [20] Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

2018 Impact Factor: 1.008