# American Institute of Mathematical Sciences

March  2018, 23(2): 525-541. doi: 10.3934/dcdsb.2017206

## Asymptotic behaviour of the solutions to a virus dynamics model with diffusion

 1 Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan 2 Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan

Received  February 2017 Revised  May 2017 Published  December 2017

Asymptotic behaviour of the solutions to a basic virus dynamics model is discussed. We consider the population of uninfected cells, infected cells, and virus particles. Diffusion effect is incorporated there. First, the Lyapunov function effective to the spatially homogeneous part (ODE model without diffusion) admits the $L^1$ boundedness of the orbit. Then the pre-compactness of this orbit in the space of continuous functions is derived by the semigroup estimates. Consequently, from the invariant principle, if the basic reproductive number $R_0$ is less than or equal to 1, each orbit converges to the disease free spatially homogeneous equilibrium, and if $R_0>1$, each orbit converges to the infected spatially homogeneous equilibrium, which means that the simple diffusion does not affect the asymptotic behaviour of the solutions.

Citation: Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206
##### References:

show all references

##### References:
The graphs of $u_i$'s: In the case $R_0 <1$. (a) $u_1$. (b) $u_2$. (c) $u_3$. The oscillation of the initial functions decays with the passage of time, and the solutions tend to the spatially homogeneous disease free steady states.
The graphs of $u_i$'s: In the case $R_0>1$. (a, d) $u_1$. (b, e) $u_2$. (c, f) $u_3$. The view angle of the graphs in the upper row is the same as that of Figure 1.
The graphs of $u_3$: In the case $R_0>1$. We divide Figure 2(c) into three parts: (a) $0\leqq t \leqq 2.1$, (b) $2.1\leqq t \leqq 6.0$, and (c) $6.0 \leqq t \leqq 15.0$.
 [1] Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427 [2] Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 [3] Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 [4] Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030 [5] Xiulan Lai, Xingfu Zou. A reaction diffusion system modeling virus dynamics and CTLs response with chemotaxis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2567-2585. doi: 10.3934/dcdsb.2016061 [6] Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733 [7] Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 [8] María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157 [9] Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511 [10] Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283 [11] Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063 [12] Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087 [13] Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 [14] Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 [15] Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003 [16] Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 [17] Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 [18] Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725 [19] Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253 [20] Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

2018 Impact Factor: 1.008