November  2017, 22(9): 3421-3438. doi: 10.3934/dcdsb.2017173

The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

* Corresponding author: heyn@mail.xjtu.edu.cn

Received  April 2016 Revised  May 2017 Published  July 2017

Fund Project: The first author is supported by the NSF of China under grant No. 91630206. The second author is supported by the NSF of China under grant No. 11362021 and the Major Research and Development Program of China under grant No. 2016YFB0200901

In this paper, we present the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. The Galerkin mixed finite element satisfying inf-sup condition is used for the spatial discretization and the temporal treatment is implicit/explict scheme, which is Euler implicit scheme for the linear terms and explicit scheme for the nonlinear term. We prove that this method is almost unconditionally convergent and obtain the optimal $H^1-L^2$ error estimate of the numerical velocity-pressure under the hypothesis of $H^2$-regularity of the solution for the three dimensional nonstationary Navier-Stokes equations. Finally some numerical experiments are carried out to demonstrate the effectiveness of the method.

Citation: Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173
References:
[1]

R. A. Adams, Sobolev Space, Academic press, New York, 1975. Google Scholar

[2]

A. O. Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations, Numer. Math., 68 (1994), 189-213. doi: 10.1007/s002110050056. Google Scholar

[3]

G. A. Baker, Galerkin Approximations for the Navier-Stokes Equations, manuscript, Harvard University, Cambridge, MA, 1976.Google Scholar

[4]

G. A. BakerV. A. Dougalis and O. A. Karakashian, On a high order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp., 39 (1982), 339-375. doi: 10.1090/S0025-5718-1982-0669634-0. Google Scholar

[5]

J. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211-224. doi: 10.1007/BF01399555. Google Scholar

[6]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Google Scholar

[7]

W. E and J. G. Liu, Projection methods Ⅰ: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057. doi: 10.1137/0732047. Google Scholar

[8]

G. FairweatherH. P. Ma and W. W. Sun, Orthogonal spline collocation methods for the stream function-vorticity formulation of the Navier-Stokes equations, Numer. Methods for PDEs, 24 (2008), 449-464. doi: 10.1002/num.20269. Google Scholar

[9]

J. F. Gerbeau, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford univerisity press, Oxford, 2006. doi: 10.1093/acprof:oso/9780198566656.001.0001. Google Scholar

[10]

V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, 1986. doi: 10.1007/978-3-642-61623-5. Google Scholar

[11]

Y. N. He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with $H^2$ or $H^1$ initial data, Numer. Methods for PDEs, 21 (2005), 875-904. doi: 10.1002/num.20065. Google Scholar

[12]

Y. N. He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with with $L^2$ initial data, Numer. Methods for PDEs(24), (2008), 79-103. doi: 10.1002/num.20234. Google Scholar

[13]

Y. N. He and K. T. Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations, Numer. Math., 79 (1998), 77-106. doi: 10.1007/s002110050332. Google Scholar

[14]

Y. N. He and K. T. Li, Nonlinear Galerkin method and two-step method for the Navier-Stokes equations, Numer. Methods for PDEs, 12 (1996), 283-305. doi: 10.1002/(SICI)1098-2426(199605)12:3<283::AID-NUM1>3.0.CO;2-K. Google Scholar

[15]

Y. N. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285. doi: 10.1137/S0036142901385659. Google Scholar

[16]

Y. N. He and K. M. Liu, A multi-level finite element method for the time-dependent Navier-Stokes equations, Numer. Methods for PDEs, 21 (2005), 1052-1078. doi: 10.1002/num.20077. Google Scholar

[17]

Y. N. HeK. M. Liu and W. W. Sun, Multi-level spectral Galerkin method for the Navier-Stokes equations Ⅰ: spatial discretization, Numer. Math., 101 (2005), 501-522. doi: 10.1007/s00211-005-0632-3. Google Scholar

[18]

Y. N. HeY. P. Lin and W. W. Sun, Stabilized finite element methods for the nonstationary Navier-Stokes problem, Discrete and Continuous DynamicalSystems-Series B, 6 (2006), 41-68. Google Scholar

[19]

Y. N. He and W. W. Sun, Stability and convegence of the Crank-Nicolson/ Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007), 837-869. doi: 10.1137/050639910. Google Scholar

[20]

Y. N. He, Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes problem, Mathmatics of Computation, 74 (2005), 1201-1216. doi: 10.1090/S0025-5718-05-01751-5. Google Scholar

[21]

Y. N. HeH. L. MiaoR. M. M. Mattheij and Z. X. Chen, Numerical analysis of a modified finite element nonlinear Galerkin method, Numer. Math., 97 (2004), 725-756. doi: 10.1007/s00211-003-0516-3. Google Scholar

[22]

Y. N. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Mathmatics of Computation, 77 (2008), 2097-2124. doi: 10.1090/S0025-5718-08-02127-3. Google Scholar

[23]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier--Stokes problem. Part Ⅰ: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. doi: 10.1137/0719018. Google Scholar

[24]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier--Stokes problem. Part Ⅳ: Error estimates for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384. doi: 10.1137/0727022. Google Scholar

[25]

A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20 (2000), 633-667. doi: 10.1093/imanum/20.4.633. Google Scholar

[26]

H. Johnston and J. G. Liu, Accurate, stable and efficient Navier-Stokes slovers based on explicit treatment of the pressure term, J. Computational Physics, 199 (2004), 221-259. doi: 10.1016/j.jcp.2004.02.009. Google Scholar

[27]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323. doi: 10.1016/0021-9991(85)90148-2. Google Scholar

[28]

H. P. Ma and W. W. Sun, Optimal Error Estimates of the Legendre Petro-Galerkin and pseudospectral methods for the generalized Korteweg-de Vries Equation, SIAM J. Numer. Anal., 39 (2001), 1380-1394. doi: 10.1137/S0036142900378327. Google Scholar

[29]

M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in: Handbook of Numerical Analysis, North-Holland, Amsterdam, 4 (1998), 503-688. Google Scholar

[30]

R. H. Nochetto and J. H. Pyo, A finite element Gauge-Uzawa method Part Ⅰ: Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), 1043-1068. doi: 10.1137/040609756. Google Scholar

[31]

J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201-229. doi: 10.1080/00036819008839963. Google Scholar

[32]

J. C. Simo and F. Armero, Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations, Comput. Methods Appl. Mech. Engrg., 111 (1994), 111-154. doi: 10.1016/0045-7825(94)90042-6. Google Scholar

[33]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co. , Amsterdam-New York-Oxford, 1977. Google Scholar

[34]

F. Tone, Error analysis for a second scheme for the Navier-Stokes equations, Applied Numerical Mathematics, 50 (2004), 93-119. doi: 10.1016/j.apnum.2003.12.003. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Space, Academic press, New York, 1975. Google Scholar

[2]

A. O. Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations, Numer. Math., 68 (1994), 189-213. doi: 10.1007/s002110050056. Google Scholar

[3]

G. A. Baker, Galerkin Approximations for the Navier-Stokes Equations, manuscript, Harvard University, Cambridge, MA, 1976.Google Scholar

[4]

G. A. BakerV. A. Dougalis and O. A. Karakashian, On a high order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp., 39 (1982), 339-375. doi: 10.1090/S0025-5718-1982-0669634-0. Google Scholar

[5]

J. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211-224. doi: 10.1007/BF01399555. Google Scholar

[6]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Google Scholar

[7]

W. E and J. G. Liu, Projection methods Ⅰ: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057. doi: 10.1137/0732047. Google Scholar

[8]

G. FairweatherH. P. Ma and W. W. Sun, Orthogonal spline collocation methods for the stream function-vorticity formulation of the Navier-Stokes equations, Numer. Methods for PDEs, 24 (2008), 449-464. doi: 10.1002/num.20269. Google Scholar

[9]

J. F. Gerbeau, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford univerisity press, Oxford, 2006. doi: 10.1093/acprof:oso/9780198566656.001.0001. Google Scholar

[10]

V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, 1986. doi: 10.1007/978-3-642-61623-5. Google Scholar

[11]

Y. N. He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with $H^2$ or $H^1$ initial data, Numer. Methods for PDEs, 21 (2005), 875-904. doi: 10.1002/num.20065. Google Scholar

[12]

Y. N. He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with with $L^2$ initial data, Numer. Methods for PDEs(24), (2008), 79-103. doi: 10.1002/num.20234. Google Scholar

[13]

Y. N. He and K. T. Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations, Numer. Math., 79 (1998), 77-106. doi: 10.1007/s002110050332. Google Scholar

[14]

Y. N. He and K. T. Li, Nonlinear Galerkin method and two-step method for the Navier-Stokes equations, Numer. Methods for PDEs, 12 (1996), 283-305. doi: 10.1002/(SICI)1098-2426(199605)12:3<283::AID-NUM1>3.0.CO;2-K. Google Scholar

[15]

Y. N. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285. doi: 10.1137/S0036142901385659. Google Scholar

[16]

Y. N. He and K. M. Liu, A multi-level finite element method for the time-dependent Navier-Stokes equations, Numer. Methods for PDEs, 21 (2005), 1052-1078. doi: 10.1002/num.20077. Google Scholar

[17]

Y. N. HeK. M. Liu and W. W. Sun, Multi-level spectral Galerkin method for the Navier-Stokes equations Ⅰ: spatial discretization, Numer. Math., 101 (2005), 501-522. doi: 10.1007/s00211-005-0632-3. Google Scholar

[18]

Y. N. HeY. P. Lin and W. W. Sun, Stabilized finite element methods for the nonstationary Navier-Stokes problem, Discrete and Continuous DynamicalSystems-Series B, 6 (2006), 41-68. Google Scholar

[19]

Y. N. He and W. W. Sun, Stability and convegence of the Crank-Nicolson/ Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007), 837-869. doi: 10.1137/050639910. Google Scholar

[20]

Y. N. He, Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes problem, Mathmatics of Computation, 74 (2005), 1201-1216. doi: 10.1090/S0025-5718-05-01751-5. Google Scholar

[21]

Y. N. HeH. L. MiaoR. M. M. Mattheij and Z. X. Chen, Numerical analysis of a modified finite element nonlinear Galerkin method, Numer. Math., 97 (2004), 725-756. doi: 10.1007/s00211-003-0516-3. Google Scholar

[22]

Y. N. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Mathmatics of Computation, 77 (2008), 2097-2124. doi: 10.1090/S0025-5718-08-02127-3. Google Scholar

[23]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier--Stokes problem. Part Ⅰ: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. doi: 10.1137/0719018. Google Scholar

[24]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier--Stokes problem. Part Ⅳ: Error estimates for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384. doi: 10.1137/0727022. Google Scholar

[25]

A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20 (2000), 633-667. doi: 10.1093/imanum/20.4.633. Google Scholar

[26]

H. Johnston and J. G. Liu, Accurate, stable and efficient Navier-Stokes slovers based on explicit treatment of the pressure term, J. Computational Physics, 199 (2004), 221-259. doi: 10.1016/j.jcp.2004.02.009. Google Scholar

[27]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323. doi: 10.1016/0021-9991(85)90148-2. Google Scholar

[28]

H. P. Ma and W. W. Sun, Optimal Error Estimates of the Legendre Petro-Galerkin and pseudospectral methods for the generalized Korteweg-de Vries Equation, SIAM J. Numer. Anal., 39 (2001), 1380-1394. doi: 10.1137/S0036142900378327. Google Scholar

[29]

M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in: Handbook of Numerical Analysis, North-Holland, Amsterdam, 4 (1998), 503-688. Google Scholar

[30]

R. H. Nochetto and J. H. Pyo, A finite element Gauge-Uzawa method Part Ⅰ: Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), 1043-1068. doi: 10.1137/040609756. Google Scholar

[31]

J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201-229. doi: 10.1080/00036819008839963. Google Scholar

[32]

J. C. Simo and F. Armero, Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations, Comput. Methods Appl. Mech. Engrg., 111 (1994), 111-154. doi: 10.1016/0045-7825(94)90042-6. Google Scholar

[33]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co. , Amsterdam-New York-Oxford, 1977. Google Scholar

[34]

F. Tone, Error analysis for a second scheme for the Navier-Stokes equations, Applied Numerical Mathematics, 50 (2004), 93-119. doi: 10.1016/j.apnum.2003.12.003. Google Scholar

Figure 1.  Comparison of the velocity ${u}$ and pressure $p$ with different time steps $\tau$ ($\nu=1.0$ and $h=1/24$)
Figure 2.  Comparison of the error for the velocity ${u}$ and pressure $p$ with different times steps $\tau$
Figure 3.  Comparison of the pressure $p$ at $T=1.0$ with different times steps ($\tau=0.1,0.05,0.01$)
Figure 4.  Comparison of the velocity ${u}$ at $T=1.0$ in different $y$-plane($y=0.75,0.5,0.25)$)with different times steps $\tau=0.1(\text{top}),0.05(\text{middle}),0.01(\text{bottom})$
Table 1.  The norm $\|u^m_h\|_0$ of the Euler Explicit/Implicit scheme(T=6.0)
1/h$\tau$
0.20.30.40.50.751.0
160.641684e-50.642277e-50.642915e-50.643601e-50.645542e-50.64787e-5
240.655394e-50.65601e-50.656672e-50.65738e-50.659394e-50.661811e-5
320.660154e-50.660778e-50.661448e-50.662165e-50.664204e-50.666651e-5
400.662344e-50.662971e-50.663644e-50.664368e-50.666417e-50.66888e-5
480.663529e-50.664159e-50.664832e-50.665557e-50.667614e-50.670082e-5
1/h$\tau$
0.20.30.40.50.751.0
160.641684e-50.642277e-50.642915e-50.643601e-50.645542e-50.64787e-5
240.655394e-50.65601e-50.656672e-50.65738e-50.659394e-50.661811e-5
320.660154e-50.660778e-50.661448e-50.662165e-50.664204e-50.666651e-5
400.662344e-50.662971e-50.663644e-50.664368e-50.666417e-50.66888e-5
480.663529e-50.664159e-50.664832e-50.665557e-50.667614e-50.670082e-5
Table 2.  The norm $\|\nabla u^m_h\|_0$ of the Euler Explicit/Implicit scheme(T=6.0)
1/h$\tau$
0.20.30.40.50.751.0
160.528852e-40.529345e-40.529924e-40.530582e-40.532305e-40.53425e-4
240.535418e-40.535932e-40.536536e-40.537106e-40.538837e-40.540859e-4
320.537892e-40.538435e-40.539056e-40.539624e-40.54138e-40.543468e-4
400.539084e-40.539595e-40.54019e-40.540862e-40.542633e-40.544733e-4
480.539725e-40.540276e-40.540809e-40.541456e-40.543187e-40.545238e-4
1/h$\tau$
0.20.30.40.50.751.0
160.528852e-40.529345e-40.529924e-40.530582e-40.532305e-40.53425e-4
240.535418e-40.535932e-40.536536e-40.537106e-40.538837e-40.540859e-4
320.537892e-40.538435e-40.539056e-40.539624e-40.54138e-40.543468e-4
400.539084e-40.539595e-40.54019e-40.540862e-40.542633e-40.544733e-4
480.539725e-40.540276e-40.540809e-40.541456e-40.543187e-40.545238e-4
Table 3.  The norm $\|p^m_h\|_0$ of the Euler Explicit/Implicit scheme(T=6.0)
1/h$\tau$
0.20.30.40.50.751.0
160.01280030.01280030.01280030.01280030.01280030.0128003
240.01280030.01280030.01280030.01280030.01280030.0128003
320.01280020.01280020.01280030.01280020.01280030.0128003
400.01280020.01280020.01280020.01280030.01280030.0128003
480.01280020.01280020.01280020.01280020.01280020.0128002
1/h$\tau$
0.20.30.40.50.751.0
160.01280030.01280030.01280030.01280030.01280030.0128003
240.01280030.01280030.01280030.01280030.01280030.0128003
320.01280020.01280020.01280030.01280020.01280030.0128003
400.01280020.01280020.01280020.01280030.01280030.0128003
480.01280020.01280020.01280020.01280020.01280020.0128002
Table 4.  The convergence of the Euler Explicit/Implicit scheme
h$\frac{\|u-u_h\|_{L^2}}{\|u\|_{L^2}}$rate$\frac{\|\nabla(u-u_h)\|_{L^2}}{\|\nabla u\|_{L^2}}$rate$\frac{\|p-p_h\|_{L^2}}{\|p\|_{L^2}}$rate
1/160.402465e-1/0.187043/0.563091e-3/
1/240.176129e-12.03810.1180231.13560.268825e-31.8235
1/320.980015e-22.03780.08654381.07840.160528e-31.7922
1/400.621538e-22.04070.06843961.05180.108419e-31.7588
1/480.42794e-22.04700.05664591.03740.791043e-41.7290
h$\frac{\|u-u_h\|_{L^2}}{\|u\|_{L^2}}$rate$\frac{\|\nabla(u-u_h)\|_{L^2}}{\|\nabla u\|_{L^2}}$rate$\frac{\|p-p_h\|_{L^2}}{\|p\|_{L^2}}$rate
1/160.402465e-1/0.187043/0.563091e-3/
1/240.176129e-12.03810.1180231.13560.268825e-31.8235
1/320.980015e-22.03780.08654381.07840.160528e-31.7922
1/400.621538e-22.04070.06843961.05180.108419e-31.7588
1/480.42794e-22.04700.05664591.03740.791043e-41.7290
[1]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[2]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

[3]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[4]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[5]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[6]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[7]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[8]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[9]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[10]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[11]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[12]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[13]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[14]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[15]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[16]

François Alouges. A new finite element scheme for Landau-Lifchitz equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 187-196. doi: 10.3934/dcdss.2008.1.187

[17]

Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159

[18]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[19]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[20]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (24)
  • Cited by (0)

Other articles
by authors

[Back to Top]