# American Institute of Mathematical Sciences

December  2017, 22(10): 3671-3689. doi: 10.3934/dcdsb.2017148

## Area preserving geodesic curvature driven flow of closed curves on a surface

 1 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, 12000, Czech Republic 2 Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48, Bratislava, Slovakia

* Corresponding author: Miroslav Kolář

Received  December 2016 Revised  March 2017 Published  April 2017

Fund Project: The first author is supported by the grant No. 14-36566G of the Czech Science Foundation and by the grant No. 15-27178A of Ministry of Health of the Czech Republic

We investigate a non-local geometric flow preserving surface area enclosed by a curve on a given surface evolved in the normal direction by the geodesic curvature and the external force. We show how such a flow of surface curves can be projected into a flow of planar curves with the non-local normal velocity. We prove that the surface area preserving flow decreases the length of the evolved surface curves. Local existence and continuation of classical smooth solutions to the governing system of partial differential equations is analysed as well. Furthermore, we propose a numerical method of flowing finite volume for spatial discretization in combination with the Runge-Kutta method for solving the resulting system. Several computational examples demonstrate variety of evolution of surface curves and the order of convergence.

Citation: Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148
##### References:

show all references

##### References:
Illustration of a curve $\mathcal{G}_t$ on a given surface $\mathcal{M}$ and its projection $\Gamma_t$ to plane
Discretization of a segment of a curve by flowing finite volumes
Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 10$ (solid) and several intermediate curves $\mathcal{G}_t$ (dotted). The underlying surface $\mathcal{M}$ is plotted in gray color. Right: time evolution of the projected planar curves $\Gamma_t$ (see Example 1)
Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 30$ (solid). The underlying surface $\mathcal{M}$ is plotted in gray color. Right: time evolution of the projected planar curves $\Gamma_t$ (see Example 2)
Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 8$ (solid) are presented. The surface $\mathcal{M}$ is plotted in gray color. Right: time evolution of the projected planar curves $\Gamma_t$ (see Example 3)
Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 15$ (solid) are shown. The surface $\mathcal{M}$ is plotted in gray. Right: Time evolution of the projected planar curves $\Gamma_t$ (see Example 4)
Settings of computational examples
 Ex. $\mathbf{X}_{ini}, u \in [0,1]$ $\varphi$ 1 $\mathbf{X}_{ini} = (\frac14 + r(u) \cos(2 \pi u), -\frac14 + r(u) \sin(2 \pi u))^T$ $\varphi(x,y) = \sqrt{4 - x^2 - y^2}$ 2 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac1{10} + \sin(2 \pi u))^T$ $\varphi(x,y) = y^2$ 3 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac15 + \sin(2 \pi u))^T$ $\varphi(x,y) = \sin(\pi y)$ 4 $\mathbf{X}_{ini} = (\frac12 \cos(2 \pi u), \sin(2 \pi u))^T$ $\varphi(x,y) = x^2 - y^4$
 Ex. $\mathbf{X}_{ini}, u \in [0,1]$ $\varphi$ 1 $\mathbf{X}_{ini} = (\frac14 + r(u) \cos(2 \pi u), -\frac14 + r(u) \sin(2 \pi u))^T$ $\varphi(x,y) = \sqrt{4 - x^2 - y^2}$ 2 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac1{10} + \sin(2 \pi u))^T$ $\varphi(x,y) = y^2$ 3 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac15 + \sin(2 \pi u))^T$ $\varphi(x,y) = \sin(\pi y)$ 4 $\mathbf{X}_{ini} = (\frac12 \cos(2 \pi u), \sin(2 \pi u))^T$ $\varphi(x,y) = x^2 - y^4$
Table of EOCs for Example 1
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $3.2397 \cdot 10^{-2}$ - $3.2516 \cdot 10^{-2}$ - 200 $8.2467 \cdot 10^{-3}$ 1.9740 8.2767 $\cdot 10^{-3}$ 1.9740 300 $3.6408 \cdot 10^{-3}$ 2.0165 3.6542 $\cdot 10^{-3}$ 2.0164 400 $2.0411 \cdot 10^{-3}$ 2.0118 2.0485 $\cdot 10^{-3}$ 2.0117 500 $1.3033 \cdot 10^{-3}$ 2.0103 1.3081 $\cdot 10^{-3}$ 2.0102
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $3.2397 \cdot 10^{-2}$ - $3.2516 \cdot 10^{-2}$ - 200 $8.2467 \cdot 10^{-3}$ 1.9740 8.2767 $\cdot 10^{-3}$ 1.9740 300 $3.6408 \cdot 10^{-3}$ 2.0165 3.6542 $\cdot 10^{-3}$ 2.0164 400 $2.0411 \cdot 10^{-3}$ 2.0118 2.0485 $\cdot 10^{-3}$ 2.0117 500 $1.3033 \cdot 10^{-3}$ 2.0103 1.3081 $\cdot 10^{-3}$ 2.0102
Table of EOCs for Example 2
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $1.4812 \cdot 10^{-3}$ - $1.4839 \cdot 10^{-3}$ - 200 $3.7049 \cdot 10^{-4}$ 1.9993 $3.7092 \cdot 10^{-4}$ 2.0002 300 $1.6453 \cdot 10^{-4}$ 2.0019 $1.6471 \cdot 10^{-4}$ 2.0022 400 $8.2431 \cdot 10^{-5}$ 2.0045 $9.2525 \cdot 10^{-5}$ 2.0046 500 $5.9055 \cdot 10^{-5}$ 2.0077 $5.9114 \cdot 10^{-5}$ 2.0077
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $1.4812 \cdot 10^{-3}$ - $1.4839 \cdot 10^{-3}$ - 200 $3.7049 \cdot 10^{-4}$ 1.9993 $3.7092 \cdot 10^{-4}$ 2.0002 300 $1.6453 \cdot 10^{-4}$ 2.0019 $1.6471 \cdot 10^{-4}$ 2.0022 400 $8.2431 \cdot 10^{-5}$ 2.0045 $9.2525 \cdot 10^{-5}$ 2.0046 500 $5.9055 \cdot 10^{-5}$ 2.0077 $5.9114 \cdot 10^{-5}$ 2.0077
Table of EOCs for Example 3
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $4.3505 \cdot 10^{-3}$ - $4.7156 \cdot 10^{-3}$ - 200 $9.4649 \cdot 10^{-4}$ 2.2005 $9.5944 \cdot 10^{-4}$ 2.2972 300 $4.1813 \cdot 10^{-4}$ 2.0149 $4.2481 \cdot 10^{-4}$ 2.0082 400 $2.3506 \cdot 10^{-4}$ 2.0021 $2.3885 \cdot 10^{-4}$ 2.0015 500 $1.5050 \cdot 10^{-4}$ 1.9980 $1.5293 \cdot 10^{-4}$ 1.9980
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $4.3505 \cdot 10^{-3}$ - $4.7156 \cdot 10^{-3}$ - 200 $9.4649 \cdot 10^{-4}$ 2.2005 $9.5944 \cdot 10^{-4}$ 2.2972 300 $4.1813 \cdot 10^{-4}$ 2.0149 $4.2481 \cdot 10^{-4}$ 2.0082 400 $2.3506 \cdot 10^{-4}$ 2.0021 $2.3885 \cdot 10^{-4}$ 2.0015 500 $1.5050 \cdot 10^{-4}$ 1.9980 $1.5293 \cdot 10^{-4}$ 1.9980
Table of EOCs for Example 4
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $1.8882 \cdot 10^{-3}$ - $1.9422 \cdot 10^{-3}$ - 200 $4.7176 \cdot 10^{-4}$ 2.0009 $4.8494 \cdot 10^{-4}$ 2.0018 300 $2.0979 \cdot 10^{-4}$ 1.9986 $2.1563 \cdot 10^{-4}$ 1.9988 400 $1.1808 \cdot 10^{-4}$ 1.9978 $1.2136 \cdot 10^{-4}$ 1.9980 500 $7.5628 \cdot 10^{-5}$ 1.9966 $7.7728 \cdot 10^{-5}$ 1.9968
 $M$ $error_{max}$ EOC $error_{L1}$ EOC 100 $1.8882 \cdot 10^{-3}$ - $1.9422 \cdot 10^{-3}$ - 200 $4.7176 \cdot 10^{-4}$ 2.0009 $4.8494 \cdot 10^{-4}$ 2.0018 300 $2.0979 \cdot 10^{-4}$ 1.9986 $2.1563 \cdot 10^{-4}$ 1.9988 400 $1.1808 \cdot 10^{-4}$ 1.9978 $1.2136 \cdot 10^{-4}$ 1.9980 500 $7.5628 \cdot 10^{-5}$ 1.9966 $7.7728 \cdot 10^{-5}$ 1.9968
 [1] Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 [2] Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125 [3] Jun Li, Qi Wang. Flow driven dynamics of sheared flowing polymer-particulate nanocomposites. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1359-1382. doi: 10.3934/dcds.2010.26.1359 [4] Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933 [5] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 [6] Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689 [7] Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441 [8] Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643 [9] Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200 [10] Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217 [11] Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687 [12] Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963 [13] Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036 [14] Yong Chen, Hongjun Gao, María J. Garrido–Atienza, Björn Schmalfuss. Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 79-98. doi: 10.3934/dcds.2014.34.79 [15] Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 [16] Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 [17] Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158 [18] Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983 [19] Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-28. doi: 10.3934/dcds.2019243 [20] Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

2018 Impact Factor: 1.008