November  2017, 22(9): 3259-3272. doi: 10.3934/dcdsb.2017136

Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones

1. 

Departamento de Matemática, ICMC-Universidade de Sãao Paulo, Avenida Trabalhador Sãao-carlense, 400, Sãao Carlos, SP, 13566-590, Brazil

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

3. 

Departamento de Física, Química e Matemática, UFSCar, Sorocaba, SP, 18052-780, Brazil

Received  August 2016 Revised  March 2017 Published  April 2017

We apply the averaging theory of first order for discontinuous differential systems to study the bifurcation of limit cycles from the periodic orbits of the uniform isochronous center of the differential systems $\dot{x}=-y+x^2, \;\dot{y}=x+xy$, and $\dot{x}=-y+x^2y, \;\dot{y}=x+xy^2$, when they are perturbed inside the class of all discontinuous quadratic and cubic polynomials differential systems with four zones separately by the axes of coordinates, respectively.

Using averaging theory of first order the maximum number of limit cycles that we can obtain is twice the maximum number of limit cycles obtained in a previous work for discontinuous quadratic differential systems perturbing the same uniform isochronous quadratic center at origin perturbed with two zones separately by a straight line, and 5 more limit cycles than those achieved in a prior result for discontinuous cubic differential systems with the same uniform isochronous cubic center at the origin perturbed with two zones separately by a straight line. Comparing our results with those obtained perturbing the mentioned centers by the continuous quadratic and cubic differential systems we obtain 8 and 9 more limit cycles respectively.

Citation: Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136
References:
[1]

A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 154 (2003), 143-159. doi: 10.1016/S0377-0427(02)00818-X. Google Scholar

[2]

A. Algaba, M. Reyes, T. Ortega and A. Bravo, Campos cuárticos con velocidad angular constante, in Actas : XVI CEDYA Congreso de Ecuaciones Diferenciales y Aplicaciones, VI CMA Congreso de Matemática Aplicada, Las Palmas de Gran Canaria, 2 (1999), 1341-1348.Google Scholar

[3]

A. AlgabaM. Reyes and A. Bravo, Geometry of the uniformly isochronous centers with polynomial commutator, Differential Equations Dynam. Systems, 10 (2002), 257-275. Google Scholar

[4]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation 1954 (1954), 19pp. Google Scholar

[5]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications Appl. Math. Sci. , 163 Spring-Verlag, London, 2008. Google Scholar

[6]

A. Buicǎ and J. Llibre, Averaging methods for finding periodic orbits via Brower degree, Bull. Sci. Math., 128 (2004), 7-22. Google Scholar

[7]

J. ChavarrigaI.A. García and J. Giné, On the integrability of the differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. of Bif. and Chaos, 11 (2001), 711-722. doi: 10.1142/S0218127401002390. Google Scholar

[8]

J. ChavarrigaJ. Giné and I.A. García, Isochronous centers of cubic systems with degenerate infinity, Diff. Eq. Dyn. Sys., 7 (1999), 221-238. Google Scholar

[9]

J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qualitative Theory of Dynamical Systems, 1 (1999), 1-70. doi: 10.1007/BF02969404. Google Scholar

[10]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326. doi: 10.1016/0022-0396(91)90142-V. Google Scholar

[11]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser, Boston, 2007. Google Scholar

[12]

A.G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations, Lobachevskii J. Math., 34 (2013), 212-226. doi: 10.1134/S1995080213030049. Google Scholar

[13]

B. CollA. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 275-287. Google Scholar

[14]

C.B. Collins, Conditions for a center in a simple class of cubic systems, Differential and Integral Equations, 10 (1997), 333-356. Google Scholar

[15]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbb{R}^2$, Lecture Notes in Pure and Appl. Math., 152 (1994), 21-31. Google Scholar

[16]

R. Conti, Centers of planar polynomial systems. A review, Le Matematiche, 53 (1998), 207-240. Google Scholar

[17]

J. DevlinN.G. Lloyd and J.M. Pearson, Cubic systems and Abel equations, J. Differential Equations, 147 (1998), 435-454. doi: 10.1006/jdeq.1998.3420. Google Scholar

[18]

F.S. Dias and L.F. Mello, The center-focus problem and small amplitude limit cycles in rigid systems, Discrete Contin. Dyn. Syst., 32 (2012), 1627-1637. doi: 10.3934/dcds.2012.32.1627. Google Scholar

[19]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Nauka, Moscow, 1985 (transl. Kluwer, Dordrecht, 1988). doi: 10.1007/978-94-015-7793-9. Google Scholar

[20]

G. R. Fowles and G. L. Cassidy, Analytical Mechanics, Saunders Collegs Publishing, Philadelphia, Orlando, FL, 1993.Google Scholar

[21]

A. GasullR. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems, J. Math. Anal. Appl., 303 (2005), 391-404. doi: 10.1016/j.jmaa.2004.07.030. Google Scholar

[22]

A. Gasull and J. Torregrosa, Exact number of limit cycles for a family of rigid systems, Proc. Amer. Math. Soc., 133 (2005), 751-758. doi: 10.1090/S0002-9939-04-07542-2. Google Scholar

[23]

P. Guha and A. Ghose Choudhury, On planar and non-planar isochronous systems and Poisson structures, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1115-1131. doi: 10.1142/S0219887810004750. Google Scholar

[24]

J. Itikawa and J. Llibre, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comp. Appl. Math., 277 (2015), 171-191. doi: 10.1016/j.cam.2014.09.007. Google Scholar

[25]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comp. Appl. Math., 287 (2015), 98-114. doi: 10.1016/j.cam.2015.02.046. Google Scholar

[26]

J. Itikawa and J. Llibre, Limit cycles bifurcating from the period annulus of a uniform isochronous center in a quartic polynomial differential system, Electron. J. Differential Equations, 246 (2015), 1-11. Google Scholar

[27]

J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, to appear in Revista Matemática Iberoamericana.Google Scholar

[28]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Comput. Neurosci. , MIT Press, Cambridge, MA, 2007. Google Scholar

[29]

J. LlibreA.C. Mereu and D.D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 258 (2015), 4007-4032. doi: 10.1016/j.jde.2015.01.022. Google Scholar

[30]

J. Llibre and A.C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 413 (2014), 763-775. doi: 10.1016/j.jmaa.2013.12.031. Google Scholar

[31]

N. G. Lloyd, Degree Theory, Cambridge Tracts in Math. 73 Cambridge, 1978. Google Scholar

[32]

W.S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations, 3 (1964), 21-36. Google Scholar

[33]

O. Makarenkov and J.S.W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844. doi: 10.1016/j.physd.2012.08.002. Google Scholar

[34]

P. MardesicC. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121 (1995), 67-108. doi: 10.1006/jdeq.1995.1122. Google Scholar

[35]

L. Peng and Z. Feng, Bifurcation of limit cycles from quartic isochronous systems, Elec. J. Differential Equations, 95 (2014), 1-14. Google Scholar

[36]

D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, in World Scientific Series on Nonlinear Science A, 69, World Scientific, Singapore, 2010.Google Scholar

[37]

M. A. Teixeira, Perturbation Theory for Non-smooth Systems, in Meyers: Encyclopedia of Complexity and Systems Science, 1 (Perturbation Theory), 1325-1336, Springer, New York, 2012. Google Scholar

[38]

E.P. Volokitin and V.M. Cheresiz, Singular points and first integrals of holomorphic dynamical systems, J. Math. Sciences, 203 (2014), 605-620. doi: 10.1007/s10958-014-2162-y. Google Scholar

show all references

References:
[1]

A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 154 (2003), 143-159. doi: 10.1016/S0377-0427(02)00818-X. Google Scholar

[2]

A. Algaba, M. Reyes, T. Ortega and A. Bravo, Campos cuárticos con velocidad angular constante, in Actas : XVI CEDYA Congreso de Ecuaciones Diferenciales y Aplicaciones, VI CMA Congreso de Matemática Aplicada, Las Palmas de Gran Canaria, 2 (1999), 1341-1348.Google Scholar

[3]

A. AlgabaM. Reyes and A. Bravo, Geometry of the uniformly isochronous centers with polynomial commutator, Differential Equations Dynam. Systems, 10 (2002), 257-275. Google Scholar

[4]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation 1954 (1954), 19pp. Google Scholar

[5]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications Appl. Math. Sci. , 163 Spring-Verlag, London, 2008. Google Scholar

[6]

A. Buicǎ and J. Llibre, Averaging methods for finding periodic orbits via Brower degree, Bull. Sci. Math., 128 (2004), 7-22. Google Scholar

[7]

J. ChavarrigaI.A. García and J. Giné, On the integrability of the differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. of Bif. and Chaos, 11 (2001), 711-722. doi: 10.1142/S0218127401002390. Google Scholar

[8]

J. ChavarrigaJ. Giné and I.A. García, Isochronous centers of cubic systems with degenerate infinity, Diff. Eq. Dyn. Sys., 7 (1999), 221-238. Google Scholar

[9]

J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qualitative Theory of Dynamical Systems, 1 (1999), 1-70. doi: 10.1007/BF02969404. Google Scholar

[10]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326. doi: 10.1016/0022-0396(91)90142-V. Google Scholar

[11]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser, Boston, 2007. Google Scholar

[12]

A.G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations, Lobachevskii J. Math., 34 (2013), 212-226. doi: 10.1134/S1995080213030049. Google Scholar

[13]

B. CollA. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 275-287. Google Scholar

[14]

C.B. Collins, Conditions for a center in a simple class of cubic systems, Differential and Integral Equations, 10 (1997), 333-356. Google Scholar

[15]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbb{R}^2$, Lecture Notes in Pure and Appl. Math., 152 (1994), 21-31. Google Scholar

[16]

R. Conti, Centers of planar polynomial systems. A review, Le Matematiche, 53 (1998), 207-240. Google Scholar

[17]

J. DevlinN.G. Lloyd and J.M. Pearson, Cubic systems and Abel equations, J. Differential Equations, 147 (1998), 435-454. doi: 10.1006/jdeq.1998.3420. Google Scholar

[18]

F.S. Dias and L.F. Mello, The center-focus problem and small amplitude limit cycles in rigid systems, Discrete Contin. Dyn. Syst., 32 (2012), 1627-1637. doi: 10.3934/dcds.2012.32.1627. Google Scholar

[19]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Nauka, Moscow, 1985 (transl. Kluwer, Dordrecht, 1988). doi: 10.1007/978-94-015-7793-9. Google Scholar

[20]

G. R. Fowles and G. L. Cassidy, Analytical Mechanics, Saunders Collegs Publishing, Philadelphia, Orlando, FL, 1993.Google Scholar

[21]

A. GasullR. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems, J. Math. Anal. Appl., 303 (2005), 391-404. doi: 10.1016/j.jmaa.2004.07.030. Google Scholar

[22]

A. Gasull and J. Torregrosa, Exact number of limit cycles for a family of rigid systems, Proc. Amer. Math. Soc., 133 (2005), 751-758. doi: 10.1090/S0002-9939-04-07542-2. Google Scholar

[23]

P. Guha and A. Ghose Choudhury, On planar and non-planar isochronous systems and Poisson structures, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1115-1131. doi: 10.1142/S0219887810004750. Google Scholar

[24]

J. Itikawa and J. Llibre, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comp. Appl. Math., 277 (2015), 171-191. doi: 10.1016/j.cam.2014.09.007. Google Scholar

[25]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comp. Appl. Math., 287 (2015), 98-114. doi: 10.1016/j.cam.2015.02.046. Google Scholar

[26]

J. Itikawa and J. Llibre, Limit cycles bifurcating from the period annulus of a uniform isochronous center in a quartic polynomial differential system, Electron. J. Differential Equations, 246 (2015), 1-11. Google Scholar

[27]

J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, to appear in Revista Matemática Iberoamericana.Google Scholar

[28]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Comput. Neurosci. , MIT Press, Cambridge, MA, 2007. Google Scholar

[29]

J. LlibreA.C. Mereu and D.D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 258 (2015), 4007-4032. doi: 10.1016/j.jde.2015.01.022. Google Scholar

[30]

J. Llibre and A.C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 413 (2014), 763-775. doi: 10.1016/j.jmaa.2013.12.031. Google Scholar

[31]

N. G. Lloyd, Degree Theory, Cambridge Tracts in Math. 73 Cambridge, 1978. Google Scholar

[32]

W.S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations, 3 (1964), 21-36. Google Scholar

[33]

O. Makarenkov and J.S.W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844. doi: 10.1016/j.physd.2012.08.002. Google Scholar

[34]

P. MardesicC. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121 (1995), 67-108. doi: 10.1006/jdeq.1995.1122. Google Scholar

[35]

L. Peng and Z. Feng, Bifurcation of limit cycles from quartic isochronous systems, Elec. J. Differential Equations, 95 (2014), 1-14. Google Scholar

[36]

D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, in World Scientific Series on Nonlinear Science A, 69, World Scientific, Singapore, 2010.Google Scholar

[37]

M. A. Teixeira, Perturbation Theory for Non-smooth Systems, in Meyers: Encyclopedia of Complexity and Systems Science, 1 (Perturbation Theory), 1325-1336, Springer, New York, 2012. Google Scholar

[38]

E.P. Volokitin and V.M. Cheresiz, Singular points and first integrals of holomorphic dynamical systems, J. Math. Sciences, 203 (2014), 605-620. doi: 10.1007/s10958-014-2162-y. Google Scholar

Table 1.  Number of limit cycles for continuous and discontinuous quadratic and cubic differential systems
CaseNumber of limit cycles for
system (1)system (2)
Continuous23
Discontinuous with 2 zones57
Discontinuous with 4 zones1012
CaseNumber of limit cycles for
system (1)system (2)
Continuous23
Discontinuous with 2 zones57
Discontinuous with 4 zones1012
[1]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[2]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[3]

Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121

[4]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[5]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[6]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[7]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[8]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[9]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[10]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[11]

Jaume Giné. Center conditions for generalized polynomial kukles systems. Communications on Pure & Applied Analysis, 2017, 16 (2) : 417-426. doi: 10.3934/cpaa.2017021

[12]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[13]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[14]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[15]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

[16]

Hany A. Hosham, Eman D Abou Elela. Discontinuous phenomena in bioreactor system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2955-2969. doi: 10.3934/dcdsb.2018294

[17]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[18]

Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075

[19]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[20]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (25)
  • HTML views (25)
  • Cited by (0)

[Back to Top]