# American Institute of Mathematical Sciences

• Previous Article
Existence and stability of periodic oscillations of a rigid dumbbell satellite around its center of mass
• DCDS-B Home
• This Issue
• Next Article
Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition
September  2017, 22(7): 2651-2667. doi: 10.3934/dcdsb.2017129

## Extinction in stochastic predator-prey population model with Allee effect on prey

 University of Niš, Faculty of Sciences and Mathematics, Višegradska 33,18000 Niš, Serbia

* Corresponding author: Miljana Jovanović

Received  July 2016 Revised  December 2016 Published  April 2017

Fund Project: The authors were supported by the Grant No 174007 of MNTRS

This paper presents the analysis of the conditions which lead the stochastic predator-prey model with Allee effect on prey population to extinction. In order to find these conditions we first prove the existence and uniqueness of global positive solution of considered model using the comparison theorem for stochastic differential equations. Then, we establish the conditions under which extinction of predator and prey populations occur. We also find the conditions for parameters of the model under which the solution of the system is globally attractive in mean. Finally, the numerical illustration with real life example is carried out to confirm our theoretical results.

Citation: Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129
##### References:

show all references

##### References:
Deterministic and stochastic trajectories of moose and wolf population described by (2) with parameters (12), $\alpha=0.0002$, $A_1=0.5$, $\sigma_1^2=\sigma_2^2=0.005$
Left: Deterministic and stochastic trajectories of moose population described by (2) with parameters (12), $\alpha=0.0002$, $A_1=5$, $\sigma_1^2=\sigma_2^2=0.005$; Right: Stochastic trajectories of moose and wolf populations in which we can observe behavior of these populations in 140 years
Deterministic and stochastic trajectories of moose population described by (2) with parameters (12), $\alpha=0.01$, $A_1=0.5$ and different intensities of noise
Deterministic and stochastic trajectories of moose and wolf population described by (2) with parameters (12), $\alpha=0.01$, $A_1=5$, $\sigma_1^2=0.14$, $\sigma_2^2=0.005$
Stochastic trajectories of moose and wolf population described by (2) with three different initial values
 [1] Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073 [2] Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172 [3] Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040 [4] Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 [5] Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283 [6] Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345 [7] Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 [8] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877 [9] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247 [10] J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131 [11] Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040 [12] Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 [13] Sungrim Seirin Lee, Tsuyoshi Kajiwara. The effect of the remains of the carcass in a two-prey, one-predator model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 353-374. doi: 10.3934/dcdsb.2008.9.353 [14] Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481 [15] Peter A. Braza. A dominant predator, a predator, and a prey. Mathematical Biosciences & Engineering, 2008, 5 (1) : 61-73. doi: 10.3934/mbe.2008.5.61 [16] Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060 [17] Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173 [18] Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214 [19] Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063 [20] Sungrim Seirin Lee. Dependence of propagation speed on invader species: The effect of the predatory commensalism in two-prey, one-predator system with diffusion. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 797-825. doi: 10.3934/dcdsb.2009.12.797

2018 Impact Factor: 1.008