• Previous Article
    Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic
  • DCDS-B Home
  • This Issue
  • Next Article
    Smooth attractors for weak solutions of the SQG equation with critical dissipation
July  2017, 22(5): 1835-1855. doi: 10.3934/dcdsb.2017109

Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$

1. 

Institute for Information Transmission Problems, Moscow 127994, Russia

2. 

National Research University Higher School of Economics, Moscow 101000, Russia

3. 

Keldysh Institute of Applied Mathematics, Moscow 125047, Russia

4. 

University of Surrey, Department of Mathematics, Guildford, GU2 7XH, UK

* Corresponding author: V. Chepyzhov

Received  January 2016 Revised  March 2016 Published  March 2017

We consider the damped and driven two-dimensional Euler equations in the plane with weak solutions having finite energy and enstrophy. We show that these (possibly non-unique) solutions satisfy the energy and enstrophy equality. It is shown that this system has a strong global and a strong trajectory attractor in the Sobolev space $H^1$. A similar result on the strong attraction holds in the spaces $H^1\cap\{u:\ \|\text{curl}\, u\|_{L^p}<∞\}$ for $p≥2$.

Citation: Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109
References:
[1]

A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations, Math. Sb. , 126 (1985), 397-419; English transl. Math USSR Sb. , 54 (1986).

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland, Amsterdam, 1992.

[3]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 54 (2004), 31-52. doi: 10.3934/dcds.2004.10.31.

[4]

V. BarcilonP. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf Stream, SIAM J. Math. Anal., 19 (1988), 1355-1364. doi: 10.1137/0519099.

[5]

H. Bessaih and F. Flandoli, Weak attractor for a dissipative Euler equation, J. Dynam. Diff. Eq., 12 (2000), 713-732. doi: 10.1023/A:1009042520953.

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models Applied Mathematical Sciences, 183. Springer, New York, 2013.

[7]

S. Brull and L. Pareschi, Dissipative hydrodynamic models for the diffusion of impurities in a gas, Appl. Math. Lett., 19 (2006), 516-521. doi: 10.1016/j.aml.2005.07.008.

[8]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations, Russian J. Math. Phys., 15 (2008), 156-170. doi: 10.1134/S1061920808020039.

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics Amer. Math. Soc. , Providence, 2002.

[10]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964. doi: 10.1016/S0021-7824(97)89978-3.

[11]

V. V. ChepyzhovM. I. Vishik and S. Zelik, A strong trajectory attractor for a dissipative reaction-diffusion system, J. Math. Pures Appl., 96 (2011), 395-407. doi: 10.1016/j.matpur.2011.04.007.

[12]

V. V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 17 (2015), 513-532. doi: 10.1007/s00021-015-0213-x.

[13]

V. V. Chepyzhov, Trajectory attractors for non-autonomous dissipative 2d Euler equations, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 811-832. doi: 10.3934/dcdsb.2015.20.811.

[14]
[15]

R. DiPerna and P. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[16]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359. doi: 10.1006/jdeq.1994.1071.

[17]

A. A. Ilyin, The Euler equations with dissipation, Sb. Math. , 182 (1991), 1729-1739; English transl. in Math. USSR-Sb. , 74 (1993), 475{485.

[18]

A. A. IlyinA. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2 (2004), 403-426. doi: 10.4310/CMS.2004.v2.n3.a4.

[19]

A. A. IlyinK. Patni and S. V. Zelik, Upper bounds for the attractor dimension of damped Navier--Stokes equations in $\mathbb R^2$, Discrete Contin. Dyn. Syst., 36 (2016), 2085-2102. doi: 10.3934/dcds.2016.36.2085.

[20]

A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom of the damped-driven 2-D Navier-Stokes equations, J. Nonlin. Sci., 16 (2006), 233-253. doi: 10.1007/s00332-005-0720-7.

[21]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Int. J. Bifurc. Chaos, 20 (2010), 2723-2734. doi: 10.1142/S0218127410027313.

[22]

P. O. Kasyanov, Multivalued dynamics of of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mat. Zametki, 92 (2012), 225-240; English transl. doi: 10.1134/S0001434612070231.

[23]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow Gordon and Breach, New York, 1969.

[24]

J. -L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites non Linéaires Dunod et Gauthier-Villars, Paris, 1969.

[25]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and generalized differential equations, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[26]

I. MoiseR. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393. doi: 10.1088/0951-7715/11/5/012.

[27]

J. Pedlosky, Geophysical Fluid Dynamics Springer, New York, 1979.

[28]

F. Riesz and B. Sz. -Nagy, Functional Analysis Reprint of the 1955 original, Dover Books on Advanced Mathematics. Dover Publications, Inc. , New York, 1990.

[29]

A. Robertson and W. Robertson, Topological Vector Spaces Reprint of the second edition, Cambridge Tracts in Mathematics, 53, Cambridge University Press, Cambridge-New York, 1980.

[30]

R. Rosa, The global attractor for the 2D Navier--Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.

[31]

J.-C. Saut, Remarks on the damped stationary Euler equations, Diff. Int. Eq., 3 (1990), 801-812.

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, New York, 1997.

[33]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977.

[34]

M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Uspekhi Mat. Nauk, 66 (2011), 3-102; English tarnsl. doi: 10.1070/RM2011v066n04ABEH004753.

[35]

G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation, Comm. Pure Appl. Math., 41 (1988), 19-46. doi: 10.1002/cpa.3160410104.

[36]

V. I. Yudovich, Some bounds for solutions of elliptic equations, Mat. Sb. , (N. S. ) 59 (1962), 229-244. English transl. in Amer. Math. Soc. Transl. , (2) 56 (1966).

[37]

V. I. Yudovich, Non-Stationary flow of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032-1066.

[38]

V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27-38. doi: 10.4310/MRL.1995.v2.n1.a4.

[39]

V. I. Yudovich, The Linearization Method in Hydrodynamical Stability Theory Translations of Mathematical Monographs, 74. American Mathematical Society, Providence, RI, 1989.

[40]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588. doi: 10.1017/S0017089507003849.

[41]

S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in models connected with fluid flows. II, 255-327, Int. Math. Ser. (N. Y. ), 7, Springer, New York, 2008.

[42]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 15 (2013), 717-745. doi: 10.1007/s00021-013-0144-3.

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations, Math. Sb. , 126 (1985), 397-419; English transl. Math USSR Sb. , 54 (1986).

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland, Amsterdam, 1992.

[3]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 54 (2004), 31-52. doi: 10.3934/dcds.2004.10.31.

[4]

V. BarcilonP. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf Stream, SIAM J. Math. Anal., 19 (1988), 1355-1364. doi: 10.1137/0519099.

[5]

H. Bessaih and F. Flandoli, Weak attractor for a dissipative Euler equation, J. Dynam. Diff. Eq., 12 (2000), 713-732. doi: 10.1023/A:1009042520953.

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models Applied Mathematical Sciences, 183. Springer, New York, 2013.

[7]

S. Brull and L. Pareschi, Dissipative hydrodynamic models for the diffusion of impurities in a gas, Appl. Math. Lett., 19 (2006), 516-521. doi: 10.1016/j.aml.2005.07.008.

[8]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations, Russian J. Math. Phys., 15 (2008), 156-170. doi: 10.1134/S1061920808020039.

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics Amer. Math. Soc. , Providence, 2002.

[10]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964. doi: 10.1016/S0021-7824(97)89978-3.

[11]

V. V. ChepyzhovM. I. Vishik and S. Zelik, A strong trajectory attractor for a dissipative reaction-diffusion system, J. Math. Pures Appl., 96 (2011), 395-407. doi: 10.1016/j.matpur.2011.04.007.

[12]

V. V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 17 (2015), 513-532. doi: 10.1007/s00021-015-0213-x.

[13]

V. V. Chepyzhov, Trajectory attractors for non-autonomous dissipative 2d Euler equations, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 811-832. doi: 10.3934/dcdsb.2015.20.811.

[14]
[15]

R. DiPerna and P. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[16]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359. doi: 10.1006/jdeq.1994.1071.

[17]

A. A. Ilyin, The Euler equations with dissipation, Sb. Math. , 182 (1991), 1729-1739; English transl. in Math. USSR-Sb. , 74 (1993), 475{485.

[18]

A. A. IlyinA. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2 (2004), 403-426. doi: 10.4310/CMS.2004.v2.n3.a4.

[19]

A. A. IlyinK. Patni and S. V. Zelik, Upper bounds for the attractor dimension of damped Navier--Stokes equations in $\mathbb R^2$, Discrete Contin. Dyn. Syst., 36 (2016), 2085-2102. doi: 10.3934/dcds.2016.36.2085.

[20]

A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom of the damped-driven 2-D Navier-Stokes equations, J. Nonlin. Sci., 16 (2006), 233-253. doi: 10.1007/s00332-005-0720-7.

[21]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Int. J. Bifurc. Chaos, 20 (2010), 2723-2734. doi: 10.1142/S0218127410027313.

[22]

P. O. Kasyanov, Multivalued dynamics of of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mat. Zametki, 92 (2012), 225-240; English transl. doi: 10.1134/S0001434612070231.

[23]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow Gordon and Breach, New York, 1969.

[24]

J. -L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites non Linéaires Dunod et Gauthier-Villars, Paris, 1969.

[25]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and generalized differential equations, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[26]

I. MoiseR. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393. doi: 10.1088/0951-7715/11/5/012.

[27]

J. Pedlosky, Geophysical Fluid Dynamics Springer, New York, 1979.

[28]

F. Riesz and B. Sz. -Nagy, Functional Analysis Reprint of the 1955 original, Dover Books on Advanced Mathematics. Dover Publications, Inc. , New York, 1990.

[29]

A. Robertson and W. Robertson, Topological Vector Spaces Reprint of the second edition, Cambridge Tracts in Mathematics, 53, Cambridge University Press, Cambridge-New York, 1980.

[30]

R. Rosa, The global attractor for the 2D Navier--Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.

[31]

J.-C. Saut, Remarks on the damped stationary Euler equations, Diff. Int. Eq., 3 (1990), 801-812.

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, New York, 1997.

[33]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977.

[34]

M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Uspekhi Mat. Nauk, 66 (2011), 3-102; English tarnsl. doi: 10.1070/RM2011v066n04ABEH004753.

[35]

G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation, Comm. Pure Appl. Math., 41 (1988), 19-46. doi: 10.1002/cpa.3160410104.

[36]

V. I. Yudovich, Some bounds for solutions of elliptic equations, Mat. Sb. , (N. S. ) 59 (1962), 229-244. English transl. in Amer. Math. Soc. Transl. , (2) 56 (1966).

[37]

V. I. Yudovich, Non-Stationary flow of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032-1066.

[38]

V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27-38. doi: 10.4310/MRL.1995.v2.n1.a4.

[39]

V. I. Yudovich, The Linearization Method in Hydrodynamical Stability Theory Translations of Mathematical Monographs, 74. American Mathematical Society, Providence, RI, 1989.

[40]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588. doi: 10.1017/S0017089507003849.

[41]

S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in models connected with fluid flows. II, 255-327, Int. Math. Ser. (N. Y. ), 7, Springer, New York, 2008.

[42]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 15 (2013), 717-745. doi: 10.1007/s00021-013-0144-3.

[1]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[2]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[3]

Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019047

[4]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[5]

Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015

[6]

Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100

[7]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[8]

Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145

[9]

Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2019101

[10]

T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$-Laplacian. Conference Publications, 2013, 2013 (special) : 525-534. doi: 10.3934/proc.2013.2013.525

[11]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[12]

Yangrong Li, Renhai Wang, Lianbing She. Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations. Evolution Equations & Control Theory, 2018, 7 (4) : 617-637. doi: 10.3934/eect.2018030

[13]

Veronica Belleri, Vittorino Pata. Attractors for semilinear strongly damped wave equations on $\mathbb R^3$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 719-735. doi: 10.3934/dcds.2001.7.719

[14]

Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243

[15]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[16]

Ming Wang. Global attractor for weakly damped gKdV equations in higher sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3799-3825. doi: 10.3934/dcds.2015.35.3799

[17]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[18]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[19]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[20]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (10)
  • HTML views (8)
  • Cited by (2)

Other articles
by authors

[Back to Top]