# American Institute of Mathematical Sciences

September  2017, 22(7): 2627-2650. doi: 10.3934/dcdsb.2017102

## Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition

 1 School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China 2 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding author

Received  July 2016 Revised  September 2016 Published  March 2017

Fund Project: The first author was supported by the NSFC grants(11361053,11471148), the Fundamental Research Funds for the Central Universities Grant (lzujbky-2016-98) and the State Scholarship Fund (201506185006) of China Scholarship Council. The second author was supported by the NSFC grant(11571125) and the NCET-12-0204

In this paper, we study the dynamic behavior of a stochastic reaction-diffusion equation with dynamical boundary condition, where the nonlinear terms $f$ and $h$ satisfy the polynomial growth condition of arbitrary order. Some higher-order integrability of the difference of the solutions near the initial time, and the continuous dependence result with respect to initial data in $H^1(\mathcal{O})× H^{\frac 1 2}(Γ)$ were established. As a direct application, we can obtain the existence of pullback random attractor $A$ in the spaces $L^{p}(\mathcal{O})× L^{p}(Γ)$ and $H^1(\mathcal{O})× H^{\frac 1 2}(Γ)$ immediately.

Citation: Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102
##### References:
 [1] R. Adams and J. Fourier, Sobolev Spaces, 2nd ed., Academic Press, 2003. Google Scholar [2] M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reactiondiffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046. Google Scholar [3] M. Anguiano, P. Marín-Rubio and J. Real, Regularity results and exponential growth for pullback attractors of a non-autonomous reaction-diffusion model with dynamical boundary conditions, Nonlinear Analysis: Real World Applications, 20 (2014), 112-125. doi: 10.1016/j.nonrwa.2014.05.003. Google Scholar [4] L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar [5] T. Bao, Regularity of pullback random attractors for stochastic Fitzhugh-Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 441-466. doi: 10.3934/dcds.2015.35.441. Google Scholar [6] P. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar [7] D. Cao, C. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. Google Scholar [8] T. Caraballo, H. Crauel, J. Langa and J. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proceedings Amer. Math. Soc., 135 (2007), 373-382. Google Scholar [9] I. Chueshov, Monotone Random Systems Theory and Applications Lecture Notes in Mathematics, 1779. Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277. Google Scholar [10] I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780. Google Scholar [11] I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDES with dynamical boundary conditions, Discrete Contin. Dyn. Syst, 18 (2007), 315-338. doi: 10.3934/dcds.2007.18.315. Google Scholar [12] H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl., Ⅳ. Ser., 176 (1999), 57-72. doi: 10.1007/BF02505989. Google Scholar [13] H. Crauel, Random point attractors versus random set attractors, J. London Math. Soc., Ⅱ. Ser., 63 (2001), 413-427. doi: 10.1017/S0024610700001915. Google Scholar [14] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar [15] H. Crauel and F. Flandoli, Attractor for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar [16] H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 449-474. doi: 10.1023/A:1022605313961. Google Scholar [17] H. Crauel, P. Kloeden and J. Real, Stochastic partial differential equations with additive noise on time-varying domains, Bol. Soc. Esp. Mat. Apl. SeMA, 51 (2010), 41-48. Google Scholar [18] H. Crauel, P. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314. doi: 10.1142/S0219493711003292. Google Scholar [19] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223. Google Scholar [20] A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77 (1998), 967-988. doi: 10.1016/S0021-7824(99)80001-4. Google Scholar [21] A. Debussche, On the finite dimensionality of random attractors, Stochastic Analysis and Applications, 15 (2007), 473-491. doi: 10.1080/07362999708809490. Google Scholar [22] Z. Fan and C. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005. Google Scholar [23] F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. Google Scholar [24] C. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358. Google Scholar [25] B. Gess, W. Liu and M. Röcknera, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013. Google Scholar [26] P. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, Proc. Roy. Soc. London A, 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753. Google Scholar [27] J. Langa and J. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl., 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001. Google Scholar [28] Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar [29] J. Li, Y. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$, Appl. Math. Comput., 215 (2010), 3399-3407. doi: 10.1016/j.amc.2009.10.033. Google Scholar [30] J. Robinson, Infinite-Dimensional Dynamical systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. Google Scholar [31] M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240. doi: 10.1007/s00013-002-8241-1. Google Scholar [32] B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, in: V. Reitmann, T. Riedrich, N. Koksch (Eds. ), International Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour, 1992,185-192.Google Scholar [33] C. Sun and W. Tan, Non-autonomous reaction-diffusion model with dynamic boundary conditions, J. Math.Anal.Appl., 443 (2016), 1007-1032. doi: 10.1016/j.jmaa.2016.05.054. Google Scholar [34] B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonl. Anal., 71 (2009), 2811-2828. doi: 10.1016/j.na.2009.01.131. Google Scholar [35] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar [36] H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamical boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88. Google Scholar [37] L. Yang and M. Yang, Long-time behavior of reaction-diffusion equations with dynamical boundary condition, Nonlinear Anal., 74 (2011), 3876-3883. doi: 10.1016/j.na.2011.02.022. Google Scholar [38] C. Zhao and J. Duan, Random attractor for the Ladyzhenskaya model with additive noise, J. Math. Anal. Appl., 362 (2010), 241-251. doi: 10.1016/j.jmaa.2009.08.050. Google Scholar [39] W. Zhao, $H^1$-random attractors for stochastic reaction diffusion equations with additive noise, Nonl. Anal., 84 (2013), 61-72. Google Scholar [40] W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commu. Nonl. Sci. Num. Simu., 18 (2013), 2707-2721. Google Scholar [41] W. Zhao and Y. Li, $(L^2, L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonl. Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. Google Scholar [42] C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008. Google Scholar

show all references

##### References:
 [1] R. Adams and J. Fourier, Sobolev Spaces, 2nd ed., Academic Press, 2003. Google Scholar [2] M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reactiondiffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046. Google Scholar [3] M. Anguiano, P. Marín-Rubio and J. Real, Regularity results and exponential growth for pullback attractors of a non-autonomous reaction-diffusion model with dynamical boundary conditions, Nonlinear Analysis: Real World Applications, 20 (2014), 112-125. doi: 10.1016/j.nonrwa.2014.05.003. Google Scholar [4] L. Arnold, Random Dynamical Systems, Springer, New York, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar [5] T. Bao, Regularity of pullback random attractors for stochastic Fitzhugh-Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 441-466. doi: 10.3934/dcds.2015.35.441. Google Scholar [6] P. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar [7] D. Cao, C. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. Google Scholar [8] T. Caraballo, H. Crauel, J. Langa and J. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proceedings Amer. Math. Soc., 135 (2007), 373-382. Google Scholar [9] I. Chueshov, Monotone Random Systems Theory and Applications Lecture Notes in Mathematics, 1779. Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277. Google Scholar [10] I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780. Google Scholar [11] I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDES with dynamical boundary conditions, Discrete Contin. Dyn. Syst, 18 (2007), 315-338. doi: 10.3934/dcds.2007.18.315. Google Scholar [12] H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl., Ⅳ. Ser., 176 (1999), 57-72. doi: 10.1007/BF02505989. Google Scholar [13] H. Crauel, Random point attractors versus random set attractors, J. London Math. Soc., Ⅱ. Ser., 63 (2001), 413-427. doi: 10.1017/S0024610700001915. Google Scholar [14] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar [15] H. Crauel and F. Flandoli, Attractor for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar [16] H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 449-474. doi: 10.1023/A:1022605313961. Google Scholar [17] H. Crauel, P. Kloeden and J. Real, Stochastic partial differential equations with additive noise on time-varying domains, Bol. Soc. Esp. Mat. Apl. SeMA, 51 (2010), 41-48. Google Scholar [18] H. Crauel, P. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314. doi: 10.1142/S0219493711003292. Google Scholar [19] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223. Google Scholar [20] A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77 (1998), 967-988. doi: 10.1016/S0021-7824(99)80001-4. Google Scholar [21] A. Debussche, On the finite dimensionality of random attractors, Stochastic Analysis and Applications, 15 (2007), 473-491. doi: 10.1080/07362999708809490. Google Scholar [22] Z. Fan and C. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005. Google Scholar [23] F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. Google Scholar [24] C. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358. Google Scholar [25] B. Gess, W. Liu and M. Röcknera, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013. Google Scholar [26] P. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, Proc. Roy. Soc. London A, 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753. Google Scholar [27] J. Langa and J. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl., 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001. Google Scholar [28] Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar [29] J. Li, Y. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$, Appl. Math. Comput., 215 (2010), 3399-3407. doi: 10.1016/j.amc.2009.10.033. Google Scholar [30] J. Robinson, Infinite-Dimensional Dynamical systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. Google Scholar [31] M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240. doi: 10.1007/s00013-002-8241-1. Google Scholar [32] B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, in: V. Reitmann, T. Riedrich, N. Koksch (Eds. ), International Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour, 1992,185-192.Google Scholar [33] C. Sun and W. Tan, Non-autonomous reaction-diffusion model with dynamic boundary conditions, J. Math.Anal.Appl., 443 (2016), 1007-1032. doi: 10.1016/j.jmaa.2016.05.054. Google Scholar [34] B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonl. Anal., 71 (2009), 2811-2828. doi: 10.1016/j.na.2009.01.131. Google Scholar [35] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar [36] H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamical boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88. Google Scholar [37] L. Yang and M. Yang, Long-time behavior of reaction-diffusion equations with dynamical boundary condition, Nonlinear Anal., 74 (2011), 3876-3883. doi: 10.1016/j.na.2011.02.022. Google Scholar [38] C. Zhao and J. Duan, Random attractor for the Ladyzhenskaya model with additive noise, J. Math. Anal. Appl., 362 (2010), 241-251. doi: 10.1016/j.jmaa.2009.08.050. Google Scholar [39] W. Zhao, $H^1$-random attractors for stochastic reaction diffusion equations with additive noise, Nonl. Anal., 84 (2013), 61-72. Google Scholar [40] W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commu. Nonl. Sci. Num. Simu., 18 (2013), 2707-2721. Google Scholar [41] W. Zhao and Y. Li, $(L^2, L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonl. Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. Google Scholar [42] C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008. Google Scholar
 [1] Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143 [2] Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 [3] Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 [4] Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301 [5] Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 [6] Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 [7] Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115 [8] Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155 [9] M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 [10] Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 [11] Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114 [12] Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181 [13] David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629 [14] Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013 [15] Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326 [16] Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43 [17] Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179 [18] Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 [19] Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 [20] Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

2018 Impact Factor: 1.008