# American Institute of Mathematical Sciences

August  2017, 22(6): 2301-2319. doi: 10.3934/dcdsb.2017097

## Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity

 Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received  June 2016 Revised  November 2016 Published  March 2017

This paper deals with the two-species chemotaxis-competition system
 $\left\{ {\begin{array}{*{20}{l}}{{u_t} = {d_1}\Delta u - \nabla \cdot (u{\chi _1}(w)\nabla w) + {\mu _1}u(1 - u - {a_1}v)}&{;{\rm{in}}\;\Omega \times (0,\infty ),}\\{{v_t} = {d_2}\Delta v - \nabla \cdot (v{\chi _2}(w)\nabla w) + {\mu _2}v(1 - {a_2}u - v)}&{;{\rm{in}}\;\Omega \times (0,\infty ),}\\{{w_t} = {d_3}\Delta w + h(u,v,w)}&{;{\rm{in}}\;\Omega \times (0,\infty ),}\end{array}} \right.$
where
 $\Omega$
is a bounded domain in
 $\mathbb{R}^n$
with smooth boundary
 $\partial \Omega$
,
 $n\in \mathbb{N}$
;
 $h$
,
 $\chi_i$
are functions satisfying some conditions. In the case that
 $\chi_i(w)=\chi_i$
, Bai–Winkler [1] proved asymptotic behavior of solutions to the above system under some conditions which roughly mean largeness of
 $\mu_1, \mu_2$
. The main purpose of this paper is to extend the previous method for obtaining asymptotic stability. As a result, the present paper improves the conditions assumed in [1], i.e., the ranges of
 $\mu_1, \mu_2$
are extended.
Citation: Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097
##### References:

show all references

##### References:
 [1] Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 [2] Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437 [3] De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037 [4] Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055 [5] Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061 [6] Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 [7] S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 [8] Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771 [9] Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011 [10] Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 [11] Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 [12] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 [13] Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 [14] Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043 [15] Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699 [16] Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 [17] Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239 [18] Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 [19] Masaaki Mizukami. Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 269-278. doi: 10.3934/dcdss.2020015 [20] Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

2018 Impact Factor: 1.008