# American Institute of Mathematical Sciences

August  2017, 22(6): 2207-2231. doi: 10.3934/dcdsb.2017093

## Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion

 School of Mathematics, South China Normal University, Guangzhou, Guangdong 510631, China

Received  December 2014 Revised  June 2017 Published  March 2017

Fund Project: Supported by the NSF of China (11171120) and the Natural Science Foundation of Guangdong Province (2016A030313426)

A convolution model of mistletoes and birds with nonlocal diffusion is considered in this paper. We first consider the stability of the constant steady states of the model by linearized method, and then the existence of traveling solutions. The main aim of this article is to challenge the hardness lying in the construction of upper-lowers for wave profile system. With the help of an additional condition, we at last obtain a pair of upper-lower solutions. A constant $c_{*}>0$ is obtained such that traveling wavefronts exist for $c\geq c_{*}$. Amongst the construction, we take advantage of the relation between two components of principle eigenvector for the linearized system to control the two components of upper solution. The method seems novel. Some simulations and discussions are given to illustrate the applications of our main results and the effect of parameters on $c_{*}$. A comparison for $c_{*}$ is also given with two different kernel functions.

Citation: Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2207-2231. doi: 10.3934/dcdsb.2017093
##### References:

show all references

##### References:
The solution of system (5) with parameters in Table 1 and initial value condition: $u_{10}(t, x)=0.1$, $u_{20}(t, x)=0.1$, $t\in[-1,0]$
(1) $\lambda_{1}(\nu)=-d_{m}+\frac{\alpha e^{-d_{i}\tau}}{\omega}\bar{k}(\nu)e^{-\lambda_{1}(\nu)\tau}$;
(2) $\lambda_{2}(\nu)=D\bar{J}(\nu)-1-D$
(1) $\mathbf{\Phi}_{1}(\nu)=-\frac{d_{m}}{\nu}+\frac{\alpha e^{-d_{i}\tau}}{\omega}\frac{\bar{k}(\nu)}{\nu}e^{-\nu\mathbf{\Phi}_{1}(\nu)\tau}$;
(2)$\mathbf{\Phi}_{2}(\nu)=\frac{D\bar{J}(\nu)-1-D}{\nu}$
(1) $\lambda_1(\nu)=-d_{m}+ \frac{\alpha e^{-d_{i}\tau}}{\omega }\bar{k}(\nu)e^{-\lambda_1(\nu)\tau}$;
(2) $\hat{\lambda}(\nu)=d\bar{k}(\nu)+D\bar{J}(\nu)-1-D$;
(3) $\mathbf{ \Phi}_{1}(\nu)=-\frac{d_{m}}{\nu}+ \frac{\alpha e^{-d_{i}\tau}}{\omega }\frac{\bar{k}(\nu)}{\nu}e^{-\lambda_1(\nu)\tau}$
(1) $\mathbf{\Phi}_{1}(\nu)=-\frac{d_{m}}{\nu}+\frac{\alpha e^{-d_{i}\tau}}{\omega\nu}e^{-\nu\mathbf{\Phi}_{1}(\nu)\tau}$;
(2) $\mathbf{\Phi}_{2}(\nu)=\frac{D\bar{J}(\nu)-1-D}{\nu}$
The traveling wave solution found with parameters in Table 1 and initial value condition: $u_{10}(t, x)=0.001$, $u_{20}(t, x)=0.001$, $t\in[-1,0]$
Parameter values for simulations
 $k(y)$ $J(y)$ $\bar{k}(\nu)$ $\bar{J}(\nu)$ $d_{m}$ $\omega$ $\alpha$ $d$ $d_{i}$ $\tau$ $D$ $\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $e^{\nu^{2}}$ $e^{\nu^{2}}$ 0.1 1 0.7 0.3 0.3 1 0.5
 $k(y)$ $J(y)$ $\bar{k}(\nu)$ $\bar{J}(\nu)$ $d_{m}$ $\omega$ $\alpha$ $d$ $d_{i}$ $\tau$ $D$ $\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $e^{\nu^{2}}$ $e^{\nu^{2}}$ 0.1 1 0.7 0.3 0.3 1 0.5
 [1] Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471 [2] Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 [3] Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048 [4] Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157 [5] Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65 [6] Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407 [7] Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128 [8] Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315 [9] Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082 [10] Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775 [11] Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301 [12] Armel Ovono Andami. From local to nonlocal in a diffusion model. Conference Publications, 2011, 2011 (Special) : 54-60. doi: 10.3934/proc.2011.2011.54 [13] Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014 [14] Chuncheng Wang, Rongsong Liu, Junping Shi, Carlos Martinez del Rio. Traveling waves of a mutualistic model of mistletoes and birds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1743-1765. doi: 10.3934/dcds.2015.35.1743 [15] Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 [16] Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 [17] Shen Bian, Li Chen, Evangelos A. Latos. Chemotaxis model with nonlocal nonlinear reaction in the whole space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5067-5083. doi: 10.3934/dcds.2018222 [18] Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015 [19] Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 [20] José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

2018 Impact Factor: 1.008