June  2017, 22(4): 1683-1717. doi: 10.3934/dcdsb.2017081

Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

* Corresponding author: Shengfan Zhou

Received  April 2016 Revised  August 2016 Published  February 2017

Fund Project: The second author is supported by the National Natural Science Foundation of China under Grant No. 11471290, Zhejiang Natural Science Foundation under Grant No. LY14A010012 and Zhejiang Normal University Foundation under Grant No. ZC304014012

In this paper, we study the long-term dynamical behavior of stochastic Boisso nade systems with time-dependent deterministic forces, additive white noise and multiplicative white noise. We first prove the existence of random attrac tor for the considered systems. And then we establish the upper semi-continui ty of random attractors for the systems as the coefficient of quadratic term tends to zero and intensities of the noises approach zero, respectively. At last, we obtain an upper bound of fractal dimension of the random attractors for both systems without quadratic term.

Citation: Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081
References:
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.
[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[3]

T. CaraballoJ. A. Langa and J. C. Robinson, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dynam. Systems, 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875. Google Scholar

[4]

V. V. Chepyzhov and M. Efendiev, Hausdorff dimension estimation for attractors of nonautonomous dynamical systems in unbounded domains: An example, Comm. Pure Appl. Math., 53 (2000), 647-665. Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics American Mathematical Society, Providence, RI, 2002. Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333. Google Scholar

[7] I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.
[8]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[10]

H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 449-474. doi: 10.1023/A:1022605313961. Google Scholar

[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511666223.
[12]

A. Debussche, On the finite dimensionality of random attractors, Stochastic Anal. Appl., 15 (1997), 473-491. doi: 10.1080/07362999708809490. Google Scholar

[13]

A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77 (1998), 967-988. doi: 10.1016/S0021-7824(99)80001-4. Google Scholar

[14]

V. Dufied and J. Boissonade, Dynamics of turing pattern monelayers close to onset, Phys. Rev. E, 53 (1996), 4883-4892. Google Scholar

[15]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437. doi: 10.1142/S0129167X08004741. Google Scholar

[16]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860. Google Scholar

[17]

X. Fan and H. Chen, Attractors for the stochastic reaction-diffusion equation driven by linear multiplicative noise with a variable coefficient, J. Math. Anal. Appl., 398 (2013), 715-728. doi: 10.1016/j.jmaa.2012.09.027. Google Scholar

[18]

R. Fitz-Hugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophys., 1 (1961), 445-466. Google Scholar

[19]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[20]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[21]

J. LiY. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$, Appl. Math. Comput., 215 (2010), 3399-3407. doi: 10.1016/j.amc.2009.10.033. Google Scholar

[22] J. D. Murry, Random attractors of reaction-diffusion equations with multiplicative noise in Lp, Springer-Verlag, New York, 2002.
[23]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating a nerve axon, Proc. I. R. E., 50 (2007), 2061-2070. doi: 10.1109/JRPROC.1962.288235. Google Scholar

[24]

J. NagumoS. Yoshizawa and S. Arimoto, Bistable Transmission Lines, IEEE Trans. Circuit Theory, CT-12 (2003), 400-412. doi: 10.1109/TCT.1965.1082476. Google Scholar

[25]

J. C. Robinson, Stability of random attractors under perturbation and approximation, J. Differential Equations, 186 (2002), 652-669. doi: 10.1016/S0022-0396(02)00038-4. Google Scholar

[26] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
[27] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, SpringerVerlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.
[28]

J. Tu, Global attractors and robustness of the boissonade system, J. Dynam. Differential Equations, 27 (2015), 187-211. doi: 10.1007/s10884-014-9396-8. Google Scholar

[29]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. B, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012. Google Scholar

[30]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1142/S0219493714500099. Google Scholar

[32]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electron. J. Differential Equations, 139 (2009), 1-18. Google Scholar

[33]

Z. Wang and S. Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 384 (2011), 160-172. doi: 10.1016/j.jmaa.2011.02.082. Google Scholar

[34]

G. Wang and Y. Tang, (L2, H1)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Abstr. Appl. Anal. 2013 (2013), Article ID 279509, 23 pages. Google Scholar

[35]

G. Wang and Y. Tang, Random attractors for stochastic reaction-diffusion equations with multiplicative noise in H01, Math. Nachr., 287 (2014), 1774-1791. doi: 10.1002/mana.201300114. Google Scholar

[36]

W. Zhao, H1-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2707-2721. doi: 10.1016/j.cnsns.2013.03.012. Google Scholar

[37]

W. Zhao and Y. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. Google Scholar

[38]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin, Dyn. Syst. Ser. B, 9 (2008), 763-785. doi: 10.3934/dcdsb.2008.9.763. Google Scholar

[39]

S. Zhou, Upper-semicontinuity of attractors for random lattice systems perturbed by small white noises, Nonlinear Anal., 75 (2012), 2793-2805. doi: 10.1016/j.na.2011.11.022. Google Scholar

[40]

S. ZhouY. Tian and Z. Wang, Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations, Appl. Math. Comput., 276 (2016), 80-95. doi: 10.1016/j.amc.2015.12.009. Google Scholar

[41]

S. Zhou and M. Zhao, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear Anal., 133 (2016), 292-318. doi: 10.1016/j.na.2015.12.013. Google Scholar

[42]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914. doi: 10.3934/dcds.2016.36.2887. Google Scholar

[43]

S. ZhouC. Zhao and Y. Wang, Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Discrete Contin. Dyn. Syst., 21 (2008), 1259-1277. doi: 10.3934/dcds.2008.21.1259. Google Scholar

show all references

References:
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.
[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[3]

T. CaraballoJ. A. Langa and J. C. Robinson, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dynam. Systems, 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875. Google Scholar

[4]

V. V. Chepyzhov and M. Efendiev, Hausdorff dimension estimation for attractors of nonautonomous dynamical systems in unbounded domains: An example, Comm. Pure Appl. Math., 53 (2000), 647-665. Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics American Mathematical Society, Providence, RI, 2002. Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333. Google Scholar

[7] I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.
[8]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[10]

H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 449-474. doi: 10.1023/A:1022605313961. Google Scholar

[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511666223.
[12]

A. Debussche, On the finite dimensionality of random attractors, Stochastic Anal. Appl., 15 (1997), 473-491. doi: 10.1080/07362999708809490. Google Scholar

[13]

A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77 (1998), 967-988. doi: 10.1016/S0021-7824(99)80001-4. Google Scholar

[14]

V. Dufied and J. Boissonade, Dynamics of turing pattern monelayers close to onset, Phys. Rev. E, 53 (1996), 4883-4892. Google Scholar

[15]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437. doi: 10.1142/S0129167X08004741. Google Scholar

[16]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860. Google Scholar

[17]

X. Fan and H. Chen, Attractors for the stochastic reaction-diffusion equation driven by linear multiplicative noise with a variable coefficient, J. Math. Anal. Appl., 398 (2013), 715-728. doi: 10.1016/j.jmaa.2012.09.027. Google Scholar

[18]

R. Fitz-Hugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophys., 1 (1961), 445-466. Google Scholar

[19]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[20]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[21]

J. LiY. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$, Appl. Math. Comput., 215 (2010), 3399-3407. doi: 10.1016/j.amc.2009.10.033. Google Scholar

[22] J. D. Murry, Random attractors of reaction-diffusion equations with multiplicative noise in Lp, Springer-Verlag, New York, 2002.
[23]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating a nerve axon, Proc. I. R. E., 50 (2007), 2061-2070. doi: 10.1109/JRPROC.1962.288235. Google Scholar

[24]

J. NagumoS. Yoshizawa and S. Arimoto, Bistable Transmission Lines, IEEE Trans. Circuit Theory, CT-12 (2003), 400-412. doi: 10.1109/TCT.1965.1082476. Google Scholar

[25]

J. C. Robinson, Stability of random attractors under perturbation and approximation, J. Differential Equations, 186 (2002), 652-669. doi: 10.1016/S0022-0396(02)00038-4. Google Scholar

[26] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
[27] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, SpringerVerlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.
[28]

J. Tu, Global attractors and robustness of the boissonade system, J. Dynam. Differential Equations, 27 (2015), 187-211. doi: 10.1007/s10884-014-9396-8. Google Scholar

[29]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. B, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012. Google Scholar

[30]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1142/S0219493714500099. Google Scholar

[32]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electron. J. Differential Equations, 139 (2009), 1-18. Google Scholar

[33]

Z. Wang and S. Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 384 (2011), 160-172. doi: 10.1016/j.jmaa.2011.02.082. Google Scholar

[34]

G. Wang and Y. Tang, (L2, H1)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Abstr. Appl. Anal. 2013 (2013), Article ID 279509, 23 pages. Google Scholar

[35]

G. Wang and Y. Tang, Random attractors for stochastic reaction-diffusion equations with multiplicative noise in H01, Math. Nachr., 287 (2014), 1774-1791. doi: 10.1002/mana.201300114. Google Scholar

[36]

W. Zhao, H1-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2707-2721. doi: 10.1016/j.cnsns.2013.03.012. Google Scholar

[37]

W. Zhao and Y. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050. Google Scholar

[38]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin, Dyn. Syst. Ser. B, 9 (2008), 763-785. doi: 10.3934/dcdsb.2008.9.763. Google Scholar

[39]

S. Zhou, Upper-semicontinuity of attractors for random lattice systems perturbed by small white noises, Nonlinear Anal., 75 (2012), 2793-2805. doi: 10.1016/j.na.2011.11.022. Google Scholar

[40]

S. ZhouY. Tian and Z. Wang, Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations, Appl. Math. Comput., 276 (2016), 80-95. doi: 10.1016/j.amc.2015.12.009. Google Scholar

[41]

S. Zhou and M. Zhao, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear Anal., 133 (2016), 292-318. doi: 10.1016/j.na.2015.12.013. Google Scholar

[42]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914. doi: 10.3934/dcds.2016.36.2887. Google Scholar

[43]

S. ZhouC. Zhao and Y. Wang, Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Discrete Contin. Dyn. Syst., 21 (2008), 1259-1277. doi: 10.3934/dcds.2008.21.1259. Google Scholar

[1]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[2]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[3]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[4]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[5]

Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure & Applied Analysis, 2016, 15 (1) : 185-196. doi: 10.3934/cpaa.2016.15.185

[6]

Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805

[7]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[8]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[9]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[10]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[11]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[12]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[13]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[14]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[15]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[16]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[17]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[18]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[19]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

[20]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]