# American Institute of Mathematical Sciences

June  2017, 22(4): 1461-1492. doi: 10.3934/dcdsb.2017070

## Global existence for a thin film equation with subcritical mass

 1 School of Mathematics, Liaoning University, Shenyang 110036, China 2 Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, USA

Corresponding author: Jinhuan Wang, was supported by National Natural Science Foundation of China (Grant No. 11301243) and Program for Liaoning Excellent Talents in University (Grant No. LJQ2015041)

Jian-Guo Liu was partially supported partially supported by KI-Net NSF RNMS grant No. 1107444, NSF DMS grant No. 1514826

Received  December 2015 Revised  November 2016 Published  February 2017

In this paper, we study existence of global entropy weak solutions to a critical-case unstable thin film equation in one-dimensional case
 $h_t+\partial_x (h^n\,\partial_{xxx} h)+\partial_x (h^{n+2}\partial_{x} h)=0,$
where
 $n≥q 1$
. There exists a critical mass
 $M_c=\frac{2\sqrt{6}π}{3}$
found by Witelski et al.(2004 Euro. J. of Appl. Math. 15,223-256) for
 $n=1$
. We obtain global existence of a non-negative entropy weak solution if initial mass is less than
 $M_c$
. For
 $n≥q 4$
, entropy weak solutions are positive and unique. For
 $n=1$
, a finite time blow-up occurs for solutions with initial mass larger than
 $M_c$
. For the Cauchy problem with
 $n=1$
and initial mass less than
 $M_c$
, we show that at least one of the following long-time behavior holds:the second moment goes to infinity as the time goes to infinity or
 $h(·, t_k)\rightharpoonup 0$
in
 $L^1(\mathbb{R})$
for some subsequence
 ${t_k} \to \infty$
.
Citation: Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070
##### References:
 [1] P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonl. Anal., 121 (2015), 19-35. doi: 10.1016/j.na.2014.08.002. Google Scholar [2] E. F. Beckenbach and R. Bellman, Introduction to Inequalities Random House Inc, 1965. Google Scholar [3] E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Ration. Mech. Anal., 129 (1995), 175-200. doi: 10.1007/BF00379920. Google Scholar [4] F. Bernis, Finite speed of propagation and continuity of the interface for slow viscous flows, Adv. Differential Equations, 1 (1996), 337-368. Google Scholar [5] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations, 83 (1990), 179-206. doi: 10.1016/0022-0396(90)90074-Y. Google Scholar [6] A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films, the moving contact line with a porous media cut off of Van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. doi: 10.1088/0951-7715/7/6/002. Google Scholar [7] A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: Regularity and long time behavior of weak solutions, Comm. Pure Appl. Math., 49 (1996), 85-123. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. Google Scholar [8] A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), 625-661. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9. Google Scholar [9] A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366. doi: 10.1512/iumj.2000.49.1887. Google Scholar [10] M. Bertsch, L. Giacomelli and G. Karali, Thin-film equations with "partial wetting" energy: Existence of weak solutions, Physica D, 209 (2005), 17-27. doi: 10.1016/j.physd.2005.06.012. Google Scholar [11] M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions, Adv. Differential Equations, 3 (1998), 417-440. Google Scholar [12] S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$, Comm. Math. Phys., 323 (2013), 1017-1070. doi: 10.1007/s00220-013-1777-z. Google Scholar [13] M. Chugunova, M. C. Pugh and R. M. Taranets, Research Announcement: Finite-time blow up and long-wave unstable thin film equations, arXiv1008.0385v1, (2010).Google Scholar [14] M. Chugunova and R. M. Taranets, Blow-up with mass concentration for the long-wave unstable thin-film equation, Appl. Anal., 95 (2016), 944-962. doi: 10.1080/00036811.2015.1047829. Google Scholar [15] R. Dal Passo and H. Garcke, Solutions of a fourth order degenerate parabolic equation with weak initial trace, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 153-181. Google Scholar [16] R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170. Google Scholar [17] L. Giacomelli, M. V. Gnann and F. Otto, Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, European J. Appl. Math., 24 (2013), 735-760. doi: 10.1017/S0956792513000156. Google Scholar [18] L. Giacomelli, H. Knüpfer and F. Otto, Smooth zero-contact-angle solutions to a thin-film equation around the steady state, J. Differential Equations, 245 (2008), 1454-1506. doi: 10.1016/j.jde.2008.06.005. Google Scholar [19] M. V. Gnann, Well-posedness and self-similar asymptotics for a thin-film equation, SIAM J. Math. Anal., 47 (2015), 2868--2902. doi: 10.1137/14099190X. Google Scholar [20] G. Grün, Droplet spreading under weak slippage: The optimal asymptotic propagation rate in the multi-dimensional case, Interfaces Free Bound., 4 (2002), 309-323. doi: 10.4171/IFB/63. Google Scholar [21] G. Grün, Droplet spreading under weak slippage: A basic result on nite speed of propagation, SIAM J. Math. Anal., 34 (2003), 992-1006. doi: 10.1137/S0036141002403298. Google Scholar [22] G. Grün, Droplet spreading under weak slippage-existence for the Cauchy problem, Comm. Partial Differential Equations, 29 (2004), 1697-1744. doi: 10.1081/PDE-200040193. Google Scholar [23] D. John, On uniqueness of weak solutions for the thin-film equation, J. Differential Equations, 259 (2015), 4122-4171. doi: 10.1016/j.jde.2015.05.013. Google Scholar [24] H. Knüpfer, Well-posedness for the Navier slip thin film equation in the case of partial wetting, Comm. Pure Appl. Math., 64 (2011), 1263-1296. doi: 10.1002/cpa.20376. Google Scholar [25] H. Knüpfer and N. Masmoudi, Darcy flow on a plate with prescribed contact angle well-posedness and lubrication approximation, Arch. Rational Mech. Anal., 218 (2015), 589-646. doi: 10.1007/s00205-015-0868-8. Google Scholar [26] R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, European J. Appl. Math., 11 (2000), 293-351. doi: 10.1017/S0956792599003794. Google Scholar [27] J. -L. Lions, Quelques MÃ©thodes de RÃ©solution Des ProblÃ©mes Aux Limites Non LinÃ©aires Paris, Dunod, 1969. Google Scholar [28] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow Vol. 27, Cambridge University Press, 2002. Google Scholar [29] D. Matthes, R. J. McCann and G. SavarÃ©, A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations, 34 (2009), 1352-1397. doi: 10.1080/03605300903296256. Google Scholar [30] A. Mellet, The thin film equation with non zero contact angle: A singular perturbation approach, Comm. Partial Differential Equations, 40 (2015), 1-39. doi: 10.1080/03605302.2014.895380. Google Scholar [31] T. G. Myers, Thin films with high surface tension, SIAM Rev., 40 (1998), 441-462. doi: 10.1137/S003614459529284X. Google Scholar [32] B. V. Sz. Nagy, Ãœber Integralungleichungen zwischen einer Funktion und ihrer Ableitung (German), Acta Univ. Szeged. Sect. Sci. Math., 10 (1941), 64-74. Google Scholar [33] F. Otto, Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations, 23 (1998), 2077-2164. doi: 10.1080/03605309808821411. Google Scholar [34] D. SlepÄev and M. C. Pugh, Self-similar blow-up of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), 1697-1738. doi: 10.1512/iumj.2005.54.2569. Google Scholar [35] R. M. Taranets and J. R. King, On an unstable thin-film equation in multi-dimensional domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 105-128. doi: 10.1007/s00030-013-0240-3. Google Scholar [36] T. P. Witelski, A. J. xBernoff and A. L. Bertozzi, Blow-up and dissipation in a critical-case unstable thin film equation, European J. Appl. Math., 15 (2004), 223-256. doi: 10.1017/S0956792504005418. Google Scholar [37] Z. Q. Wu, J. N. Zhao, J. X. Yin and H. L. Li, Nonlinear Diffusion Equations 2nd edition, Singapore, World Scientific, 2001. doi: 10.1142/9789812799791. Google Scholar

show all references

##### References:
 [1] P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonl. Anal., 121 (2015), 19-35. doi: 10.1016/j.na.2014.08.002. Google Scholar [2] E. F. Beckenbach and R. Bellman, Introduction to Inequalities Random House Inc, 1965. Google Scholar [3] E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Ration. Mech. Anal., 129 (1995), 175-200. doi: 10.1007/BF00379920. Google Scholar [4] F. Bernis, Finite speed of propagation and continuity of the interface for slow viscous flows, Adv. Differential Equations, 1 (1996), 337-368. Google Scholar [5] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations, 83 (1990), 179-206. doi: 10.1016/0022-0396(90)90074-Y. Google Scholar [6] A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films, the moving contact line with a porous media cut off of Van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. doi: 10.1088/0951-7715/7/6/002. Google Scholar [7] A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: Regularity and long time behavior of weak solutions, Comm. Pure Appl. Math., 49 (1996), 85-123. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. Google Scholar [8] A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), 625-661. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9. Google Scholar [9] A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366. doi: 10.1512/iumj.2000.49.1887. Google Scholar [10] M. Bertsch, L. Giacomelli and G. Karali, Thin-film equations with "partial wetting" energy: Existence of weak solutions, Physica D, 209 (2005), 17-27. doi: 10.1016/j.physd.2005.06.012. Google Scholar [11] M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions, Adv. Differential Equations, 3 (1998), 417-440. Google Scholar [12] S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$, Comm. Math. Phys., 323 (2013), 1017-1070. doi: 10.1007/s00220-013-1777-z. Google Scholar [13] M. Chugunova, M. C. Pugh and R. M. Taranets, Research Announcement: Finite-time blow up and long-wave unstable thin film equations, arXiv1008.0385v1, (2010).Google Scholar [14] M. Chugunova and R. M. Taranets, Blow-up with mass concentration for the long-wave unstable thin-film equation, Appl. Anal., 95 (2016), 944-962. doi: 10.1080/00036811.2015.1047829. Google Scholar [15] R. Dal Passo and H. Garcke, Solutions of a fourth order degenerate parabolic equation with weak initial trace, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 153-181. Google Scholar [16] R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170. Google Scholar [17] L. Giacomelli, M. V. Gnann and F. Otto, Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, European J. Appl. Math., 24 (2013), 735-760. doi: 10.1017/S0956792513000156. Google Scholar [18] L. Giacomelli, H. Knüpfer and F. Otto, Smooth zero-contact-angle solutions to a thin-film equation around the steady state, J. Differential Equations, 245 (2008), 1454-1506. doi: 10.1016/j.jde.2008.06.005. Google Scholar [19] M. V. Gnann, Well-posedness and self-similar asymptotics for a thin-film equation, SIAM J. Math. Anal., 47 (2015), 2868--2902. doi: 10.1137/14099190X. Google Scholar [20] G. Grün, Droplet spreading under weak slippage: The optimal asymptotic propagation rate in the multi-dimensional case, Interfaces Free Bound., 4 (2002), 309-323. doi: 10.4171/IFB/63. Google Scholar [21] G. Grün, Droplet spreading under weak slippage: A basic result on nite speed of propagation, SIAM J. Math. Anal., 34 (2003), 992-1006. doi: 10.1137/S0036141002403298. Google Scholar [22] G. Grün, Droplet spreading under weak slippage-existence for the Cauchy problem, Comm. Partial Differential Equations, 29 (2004), 1697-1744. doi: 10.1081/PDE-200040193. Google Scholar [23] D. John, On uniqueness of weak solutions for the thin-film equation, J. Differential Equations, 259 (2015), 4122-4171. doi: 10.1016/j.jde.2015.05.013. Google Scholar [24] H. Knüpfer, Well-posedness for the Navier slip thin film equation in the case of partial wetting, Comm. Pure Appl. Math., 64 (2011), 1263-1296. doi: 10.1002/cpa.20376. Google Scholar [25] H. Knüpfer and N. Masmoudi, Darcy flow on a plate with prescribed contact angle well-posedness and lubrication approximation, Arch. Rational Mech. Anal., 218 (2015), 589-646. doi: 10.1007/s00205-015-0868-8. Google Scholar [26] R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, European J. Appl. Math., 11 (2000), 293-351. doi: 10.1017/S0956792599003794. Google Scholar [27] J. -L. Lions, Quelques MÃ©thodes de RÃ©solution Des ProblÃ©mes Aux Limites Non LinÃ©aires Paris, Dunod, 1969. Google Scholar [28] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow Vol. 27, Cambridge University Press, 2002. Google Scholar [29] D. Matthes, R. J. McCann and G. SavarÃ©, A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations, 34 (2009), 1352-1397. doi: 10.1080/03605300903296256. Google Scholar [30] A. Mellet, The thin film equation with non zero contact angle: A singular perturbation approach, Comm. Partial Differential Equations, 40 (2015), 1-39. doi: 10.1080/03605302.2014.895380. Google Scholar [31] T. G. Myers, Thin films with high surface tension, SIAM Rev., 40 (1998), 441-462. doi: 10.1137/S003614459529284X. Google Scholar [32] B. V. Sz. Nagy, Ãœber Integralungleichungen zwischen einer Funktion und ihrer Ableitung (German), Acta Univ. Szeged. Sect. Sci. Math., 10 (1941), 64-74. Google Scholar [33] F. Otto, Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations, 23 (1998), 2077-2164. doi: 10.1080/03605309808821411. Google Scholar [34] D. SlepÄev and M. C. Pugh, Self-similar blow-up of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), 1697-1738. doi: 10.1512/iumj.2005.54.2569. Google Scholar [35] R. M. Taranets and J. R. King, On an unstable thin-film equation in multi-dimensional domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 105-128. doi: 10.1007/s00030-013-0240-3. Google Scholar [36] T. P. Witelski, A. J. xBernoff and A. L. Bertozzi, Blow-up and dissipation in a critical-case unstable thin film equation, European J. Appl. Math., 15 (2004), 223-256. doi: 10.1017/S0956792504005418. Google Scholar [37] Z. Q. Wu, J. N. Zhao, J. X. Yin and H. L. Li, Nonlinear Diffusion Equations 2nd edition, Singapore, World Scientific, 2001. doi: 10.1142/9789812799791. Google Scholar
 [1] C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139 [2] Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465 [3] Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897 [4] Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163 [5] Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509 [6] Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 [7] Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041 [8] Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873 [9] Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112 [10] A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185 [11] H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119 [12] Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141 [13] Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 [14] Min Chen, Olivier Goubet. Long-time asymptotic behavior of two-dimensional dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 37-53. doi: 10.3934/dcdss.2009.2.37 [15] Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 [16] Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629 [17] Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375 [18] Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683 [19] Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437 [20] Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

2018 Impact Factor: 1.008