# American Institute of Mathematical Sciences

May  2017, 22(3): 1189-1206. doi: 10.3934/dcdsb.2017058

## The Filippov equilibrium and sliding motion in an internet congestion control model

 1 School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, China 2 Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, A1C5S7, Canada

* The corresponding author

Received  September 2015 Revised  January 2016 Published  January 2017

Fund Project: The work is supported by the National Natural Science Foundation of China (11502168) the Fundamental Research Funds for the Central Universities, the Program for Young Excellent Talents at Tongji University (S.Z) and NSERC of Canada (203786 46310 2000)(Y.Y)

We consider an Internet congestion control system which is presented as a group of differential equations with time delay, modeling the random early detection (RED) algorithm. Although this model achieves success in many aspects, some basic problems are not clear. We provide the result on the existence of the equilibrium and the positivity and boundedness of the solution. Also, we implement the model by route switch mechanism, based on the minimum delay principle, to model the dynamic routing. For the simple network topology, we show that the Filippov solution exists under some restrictions on parameters. For the case with a single user group and two alternative links, we prove that the discontinuous boundary, or equivalently the sliding region, always exists and is locally attractive. This result implies that for some cases this type of routing may deviate from the purpose of the original design.

Citation: Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058
##### References:

show all references

##### References:
Configuration of marking function P
The topology of connection with single user group and $n$ links where $W(t)$ is the averaged window size of the user group and $L_i$ represents the $i$th link, $i=1, 2, \cdots, n$
The numerical simulation of (13) for (a) $q_1(t)$ and (b) $q_2(t)$ where $\tau_1=0.11$, $\tau_2=0.13$, $N=10$, $C_1=200$, $C_2=150$, $B_1=50$, $B_2=15$, $b_{1, 1}=b_{2, 1}=0.2$, $b_{1, 2}=b_{2, 2}=0.95$, $P_{1, max}=P_{2, max}=0.4$, $W(0)=0$, $q_1(0)=0, q_2(0)=0$. From the time history of $q_1(t)$ and $q_2(t)$, it is clear that the links are used simultaneously since $q_1(t)$ and $q_2(t)$ are not zero at any moment. This suggests that the two vector fields may be combined in some manner
The numerical continuation (a) by DDE-BIFTOOL [7] and simulation (b)-(e) by XPP-AUT [8] for (13) as $B_2=30$. Initial conditions: $W(0)=6$, $q_1(0)=11, q_2(0)=7$. (a) shows the distribution of the real and imaginary parts of the eigenvalues of $\dot{\mathbf{X}}(t)=\mathbf{K}(\mathbf{X}(t))$, $\lambda=\hat{\lambda}$ given by (16). The real parts of all the eigenvalues are negative and consequently the pseudo-equilibrium is stable in $\Sigma_s$ which is confirmed by the time history plots (b), (c) and (d). (e) shows that the dynamics of the system is restricted to $\Sigma$, in other words, $\Sigma_s$ is locally attractive
The numerical continuation (a) and simulation (b)-(e) for (13) when $B_2=15$. $W(0)=6$, $q_1(0)=11, q_2(0)=7$. Red dots in (a) represents the eigenvalue with positive real part. (a) shows the distribution of the eigenvalues of $\dot{\mathbf{X}}(t)=\mathbf{K}(\mathbf{X}(t))$. The maximum of the real parts of the eigenvalues is positive and consequently the pseudo-equilibrium is unstable in $\Sigma_s$ which is confirmed by the time history plots (b), (c) and (d). (e) shows that the dynamics of the system is restricted to $\Sigma$, implying the local attractivity of $\Sigma_s$
 [1] Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653 [2] Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 485-519. doi: 10.3934/nhm.2011.6.485 [3] Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401 [4] Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545 [5] D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889 [6] Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497 [7] Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043 [8] Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321 [9] Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial & Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19 [10] Tao Jiang, Liwei Liu. Analysis of a batch service multi-server polling system with dynamic service control. Journal of Industrial & Management Optimization, 2018, 14 (2) : 743-757. doi: 10.3934/jimo.2017073 [11] Mingyong Lai, Hongming Yang, Songping Yang, Junhua Zhao, Yan Xu. Cyber-physical logistics system-based vehicle routing optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 701-715. doi: 10.3934/jimo.2014.10.701 [12] Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404 [13] Gang Qian, Deren Han, Hongjin He. Congestion control with pricing in the absence of demand and cost functions: An improved trial and error method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 103-121. doi: 10.3934/jimo.2010.6.103 [14] Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473 [15] Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1341-1354. doi: 10.3934/dcdss.2019092 [16] Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2019086 [17] Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 [18] Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1 [19] John D. Nagy, Dieter Armbruster. Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences & Engineering, 2012, 9 (4) : 843-876. doi: 10.3934/mbe.2012.9.843 [20] Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

2018 Impact Factor: 1.008