March  2017, 22(2): 605-625. doi: 10.3934/dcdsb.2017029

Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise

College of Science, National University of Defense Technology, Changsha 410073, China

* Corresponding author: Jianhua Huang

Received  December 2015 Revised  November 2016 Published  December 2016

The current paper is devoted to the ergodicity of stochastic coupled fractional Ginzburg-Landau equations driven by $α$-stable noise on the Torus $\mathbb{T}$. By the maximal inequality for stochastic $α$-stable convolution and commutator estimates, the well-posedness of the mild solution for stochastic coupled fractional Ginzburg-Landau equations is established. Due to the discontinuous trajectories and non-Lipschitz nonlinear term, the existence and uniqueness of the invariant measures are obtained by the strong Feller property and the accessibility to zero.

Citation: Tianlong Shen, Jianhua Huang. Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 605-625. doi: 10.3934/dcdsb.2017029
References:
[1]

S. AlbeverioJ. Wu and T. Zhang, Parabolic SPDEs driven by Poissson white noise, Stoch. Proc. Appl., 74 (1998), 21-36. doi: 10.1016/S0304-4149(97)00112-9. Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus in Combridge Studies in Advance Mathematics, Cambridge University Press, 2004.Google Scholar

[3]

C. DoeringJ. Gibbon and C. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), 285-318. doi: 10.1016/0167-2789(94)90150-3. Google Scholar

[4]

D. DaiZ. Li and Z. Liu, Exact homoclinic wave and soliton solutions for the 2D Ginzburg-Landau equation, Physics Letters A, 372 (2008), 3010-3014. doi: 10.1016/j.physleta.2008.01.015. Google Scholar

[5]

Z. Dai and M. Jiang, Exponential attractors of the Ginzburg-Landau-BBM equations, J. Math. Res. Expo., 21 (2001), 317-322. Google Scholar

[6]

Z. DongL. Xu and X. Zhang, Exponential ergodicity of stochastic Burgers equations, J. Stat. Phys., 154 (2014), 929-949. doi: 10.1007/s10955-013-0881-y. Google Scholar

[7]

Z. DongL. Xu and X. Zhang, Invariance measures of stochastic 2D Navier-Stokes equations driven by α-stable processes, Electron. Comm. Probab., 16 (2011), 678-688. doi: 10.1214/ECP.v16-1664. Google Scholar

[8]

Z. Dong and Y. Xie, Ergodicity of stochastic 2D Navier-stokes equations with Lévy noise, J. Diff. Eqns., 251 (2011), 196-222. doi: 10.1016/j.jde.2011.03.015. Google Scholar

[9]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, Ⅰ. Compactness method, Physica D, 95 (1996), 191-228. doi: 10.1016/0167-2789(96)00055-3. Google Scholar

[10]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, Ⅱ. Contraction method, Commun. Math. Phys., 187 (1997), 45-79. doi: 10.1007/s002200050129. Google Scholar

[11]

B. Guo, H. Huang and M. Jiang, Ginzberg-Landau Equation, Science Press, Beijing, 2002.Google Scholar

[12]

M. Hairer, Ergodicity theory for stochastic PDEs, 2008. Available from: http://www.haier.org/notes/Imperial.pdf.Google Scholar

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm, Pure Appl. Math., 41 (1998), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[14]

C. KeningG. Ponce and L. Vega, Well-poesdness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.2307/2939277. Google Scholar

[15]

K. PorsezianR. Murali and A. Malomed, Modulational instability in linearly coupled complex cubie-quintic Ginzberg-Landau equations, Chaos, Soliton and Fractals, 40 (2009), 1907-1913. Google Scholar

[16]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy noise: An Evolution Equation Approach, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2007.Google Scholar

[17]

E. Priola and J. Zabcyzk, Structrual properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theorey Relat. Fields, 149 (2011), 97-137. doi: 10.1007/s00440-009-0243-5. Google Scholar

[18]

E. PriolaL. Xu and J. Zabczyk, Exponential mixing for some SPDEs with L$\acute{e}$vy noise, Stoch.& Dynam., 11 (2011), 521-534. doi: 10.1142/S0219493711003425. Google Scholar

[19]

E. PriolaA. ShirkyanL. Xu and J. Zabczyk, Exponential ergodicity and regularity for equations with Lévy noise, Stoch. Proc. Appl., 122 (2012), 106-133. doi: 10.1016/j.spa.2011.10.003. Google Scholar

[20]

H. Sakaguchi and B. Malomed, Stable solitons in coupled Ginzberg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities, PhySica D, 183 (2003), 282-292. doi: 10.1016/S0167-2789(03)00181-7. Google Scholar

[21]

T. Shen and J. Huang, Well-posedness and dynamics of stochastic fractional model for nonlinear optical fibre materials, Nonlin. Anal.-TMA, 110 (2014), 33-46. doi: 10.1016/j.na.2014.06.018. Google Scholar

[22]

E. Stein, Singular Integrals and Differentiablity Properties of Functions, Princeton University Press, 1970.Google Scholar

[23]

X. Sun and Y. Xie, Ergodicity of stochastic dissipative equations driven by α-stable process, Stoch. Anal. Appl., 32 (2014), 61-76. doi: 10.1080/07362994.2013.843141. Google Scholar

[24]

F. Wang, Gradient estimate for Ornstein-Uhlenbeck jump processes, Stoch. Proc. Appl., 121 (2011), 466-478. doi: 10.1016/j.spa.2010.12.002. Google Scholar

[25]

B. Wang, The limit behaviour for the Cauchy problem of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math., 55 (2002), 481-508. doi: 10.1002/cpa.10024. Google Scholar

[26]

L. Xu, Ergodicity of the stochastic real Ginzburg-Landau equations driven by α-stable noises, Stoch. Proc. Appl., 123 (2013), 3710-3736. doi: 10.1016/j.spa.2013.05.002. Google Scholar

[27]

L. Xu, Exponential mixing of 2D SDEs forced by degenerate Lévy noise, J. Evol. Equ., 14 (2014), 249-272. doi: 10.1007/s00028-013-0212-4. Google Scholar

show all references

References:
[1]

S. AlbeverioJ. Wu and T. Zhang, Parabolic SPDEs driven by Poissson white noise, Stoch. Proc. Appl., 74 (1998), 21-36. doi: 10.1016/S0304-4149(97)00112-9. Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus in Combridge Studies in Advance Mathematics, Cambridge University Press, 2004.Google Scholar

[3]

C. DoeringJ. Gibbon and C. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), 285-318. doi: 10.1016/0167-2789(94)90150-3. Google Scholar

[4]

D. DaiZ. Li and Z. Liu, Exact homoclinic wave and soliton solutions for the 2D Ginzburg-Landau equation, Physics Letters A, 372 (2008), 3010-3014. doi: 10.1016/j.physleta.2008.01.015. Google Scholar

[5]

Z. Dai and M. Jiang, Exponential attractors of the Ginzburg-Landau-BBM equations, J. Math. Res. Expo., 21 (2001), 317-322. Google Scholar

[6]

Z. DongL. Xu and X. Zhang, Exponential ergodicity of stochastic Burgers equations, J. Stat. Phys., 154 (2014), 929-949. doi: 10.1007/s10955-013-0881-y. Google Scholar

[7]

Z. DongL. Xu and X. Zhang, Invariance measures of stochastic 2D Navier-Stokes equations driven by α-stable processes, Electron. Comm. Probab., 16 (2011), 678-688. doi: 10.1214/ECP.v16-1664. Google Scholar

[8]

Z. Dong and Y. Xie, Ergodicity of stochastic 2D Navier-stokes equations with Lévy noise, J. Diff. Eqns., 251 (2011), 196-222. doi: 10.1016/j.jde.2011.03.015. Google Scholar

[9]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, Ⅰ. Compactness method, Physica D, 95 (1996), 191-228. doi: 10.1016/0167-2789(96)00055-3. Google Scholar

[10]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, Ⅱ. Contraction method, Commun. Math. Phys., 187 (1997), 45-79. doi: 10.1007/s002200050129. Google Scholar

[11]

B. Guo, H. Huang and M. Jiang, Ginzberg-Landau Equation, Science Press, Beijing, 2002.Google Scholar

[12]

M. Hairer, Ergodicity theory for stochastic PDEs, 2008. Available from: http://www.haier.org/notes/Imperial.pdf.Google Scholar

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm, Pure Appl. Math., 41 (1998), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[14]

C. KeningG. Ponce and L. Vega, Well-poesdness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.2307/2939277. Google Scholar

[15]

K. PorsezianR. Murali and A. Malomed, Modulational instability in linearly coupled complex cubie-quintic Ginzberg-Landau equations, Chaos, Soliton and Fractals, 40 (2009), 1907-1913. Google Scholar

[16]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy noise: An Evolution Equation Approach, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2007.Google Scholar

[17]

E. Priola and J. Zabcyzk, Structrual properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theorey Relat. Fields, 149 (2011), 97-137. doi: 10.1007/s00440-009-0243-5. Google Scholar

[18]

E. PriolaL. Xu and J. Zabczyk, Exponential mixing for some SPDEs with L$\acute{e}$vy noise, Stoch.& Dynam., 11 (2011), 521-534. doi: 10.1142/S0219493711003425. Google Scholar

[19]

E. PriolaA. ShirkyanL. Xu and J. Zabczyk, Exponential ergodicity and regularity for equations with Lévy noise, Stoch. Proc. Appl., 122 (2012), 106-133. doi: 10.1016/j.spa.2011.10.003. Google Scholar

[20]

H. Sakaguchi and B. Malomed, Stable solitons in coupled Ginzberg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities, PhySica D, 183 (2003), 282-292. doi: 10.1016/S0167-2789(03)00181-7. Google Scholar

[21]

T. Shen and J. Huang, Well-posedness and dynamics of stochastic fractional model for nonlinear optical fibre materials, Nonlin. Anal.-TMA, 110 (2014), 33-46. doi: 10.1016/j.na.2014.06.018. Google Scholar

[22]

E. Stein, Singular Integrals and Differentiablity Properties of Functions, Princeton University Press, 1970.Google Scholar

[23]

X. Sun and Y. Xie, Ergodicity of stochastic dissipative equations driven by α-stable process, Stoch. Anal. Appl., 32 (2014), 61-76. doi: 10.1080/07362994.2013.843141. Google Scholar

[24]

F. Wang, Gradient estimate for Ornstein-Uhlenbeck jump processes, Stoch. Proc. Appl., 121 (2011), 466-478. doi: 10.1016/j.spa.2010.12.002. Google Scholar

[25]

B. Wang, The limit behaviour for the Cauchy problem of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math., 55 (2002), 481-508. doi: 10.1002/cpa.10024. Google Scholar

[26]

L. Xu, Ergodicity of the stochastic real Ginzburg-Landau equations driven by α-stable noises, Stoch. Proc. Appl., 123 (2013), 3710-3736. doi: 10.1016/j.spa.2013.05.002. Google Scholar

[27]

L. Xu, Exponential mixing of 2D SDEs forced by degenerate Lévy noise, J. Evol. Equ., 14 (2014), 249-272. doi: 10.1007/s00028-013-0212-4. Google Scholar

[1]

Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109

[2]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[3]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 835-851. doi: 10.3934/dcdss.2020048

[4]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

[5]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[6]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[7]

Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181

[8]

Dingshi Li, Lin Shi, Xiaohu Wang. Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5121-5148. doi: 10.3934/dcdsb.2019046

[9]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[10]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[11]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[12]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[13]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[14]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[15]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[16]

Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145

[17]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[18]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[19]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[20]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (21)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]