# American Institute of Mathematical Sciences

January  2017, 22(1): 187-198. doi: 10.3934/dcdsb.2017009

## Z-Eigenvalue Inclusion Theorems for Tensors

 1 School of Management Science, Qufu Normal University, Rizhao, Shandong 276826, China 2 Department of Mathematics and Statistics, Curtin University, Perth, Australia

* Corresponding author: Guanglu Zhou

Received  December 2015 Revised  May 2016 Published  December 2016

Fund Project: The first author is supported by the natural science foundation of Shandong Province grant ZR2016AM10 and the Fundamental Research Funds for Qufu Normal University grant xkj201415, xkj201314

In this paper, we establish $Z$-eigenvalue inclusion theorems for general tensors, which reveal some crucial differences between $Z$-eigenvalues and $H$-eigenvalues. As an application, we obtain upper bounds for the largest $Z$-eigenvalue of a weakly symmetric nonnegative tensor, which are sharper than existing upper bounds.

Citation: Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009
##### References:

show all references

##### References:
 $\mathcal{L}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}\}$ $\mathcal{L}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{L}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 5\}$
 $\mathcal{L}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}\}$ $\mathcal{L}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{L}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 5\}$
 $\mathcal{M}_{1,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 4\}$ $\mathcal{M}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{7+\sqrt{5}}{2}\}$ $\mathcal{M}_{2,1}(\mathcal{A})=\{\lambda\in C: 2\leq |\lambda|\leq 4\}$ $\mathcal{M}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{M}_{3,1}(\mathcal{A})=\{\lambda\in C: 3+\sqrt{3}\leq |\lambda|\leq 5\}$ $\mathcal{M}_{3,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 5\}$.
 $\mathcal{M}_{1,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 4\}$ $\mathcal{M}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{7+\sqrt{5}}{2}\}$ $\mathcal{M}_{2,1}(\mathcal{A})=\{\lambda\in C: 2\leq |\lambda|\leq 4\}$ $\mathcal{M}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{M}_{3,1}(\mathcal{A})=\{\lambda\in C: 3+\sqrt{3}\leq |\lambda|\leq 5\}$ $\mathcal{M}_{3,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 5\}$.
 $\mathcal{N}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{21}}{2}\}$ $\mathcal{N}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{N}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{N}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$.
 $\mathcal{N}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{21}}{2}\}$ $\mathcal{N}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{N}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{N}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$.
 [1] Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054 [2] Gang Wang, Yuan Zhang. $Z$-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019039 [3] Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75 [4] Caili Sang, Zhen Chen. $E$-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019042 [5] Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975 [6] Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018153 [7] Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031 [8] Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765 [9] Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019092 [10] Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143 [11] Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270 [12] Ravi P. Agarwal, Kanishka Perera, Zhitao Zhang. On some nonlocal eigenvalue problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 707-714. doi: 10.3934/dcdss.2012.5.707 [13] Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1 [14] Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81. [15] Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068 [16] Gang Wang, Yiju Wang, Yuan Zhang. Brualdi-type inequalities on the minimum eigenvalue for the Fan product of M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019069 [17] Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237 [18] Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 [19] Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085 [20] Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070

2018 Impact Factor: 1.008