December  2016, 21(10): 3463-3478. doi: 10.3934/dcdsb.2016107

Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708

Received  December 2015 Revised  September 2016 Published  November 2016

In this paper, we discuss error estimates associated with three different aggregation-diffusion splitting schemes for the Keller-Segel equations. We start with one algorithm based on the Trotter product formula, and we show that the convergence rate is $C\Delta t$, where $\Delta t$ is the time-step size. Secondly, we prove the convergence rate $C\Delta t^2$ for the Strang's splitting. Lastly, we study a splitting scheme with the linear transport approximation, and prove the convergence rate $C\Delta t$.
Citation: Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107
References:
[1]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243. doi: 10.1090/S0025-5718-1981-0628693-0. Google Scholar

[2]

M. Botchev, I.Faragó and Á. Havasi, Testing weighted splitting schemes on a one-column transport-chemistry model,, Large-Scale Scientific Computing, (2014), 295. doi: 10.1007/978-3-540-24588-9_33. Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010). doi: 10.1090/gsm/019. Google Scholar

[4]

A. Gerisch and J. G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models,, Applied Numerical Mathematics, 42 (2002), 159. doi: 10.1016/S0168-9274(01)00148-9. Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (2001). doi: 10.1007/978-3-642-61798-0. Google Scholar

[6]

J. Goodman, Convergence of the random vortex method,, Communications on Pure and Applied Mathematics, 40 (1987), 189. doi: 10.1002/cpa.3160400204. Google Scholar

[7]

H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation,, Mathematics of Computation, (). Google Scholar

[8]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[9]

D. Lanser, J. G. Blom and J. G. Verwer, Time integration of the shallow water equations in spherical geometry,, Journal of Computational Physics, 171 (2001), 373. doi: 10.1006/jcph.2001.6802. Google Scholar

[10]

E. H. Lieb and M. Loss, Analysis,, $2^{nd}$ edition, (2001). doi: 10.1090/gsm/014. Google Scholar

[11]

J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations,, Mathematics of Computation, (). Google Scholar

[12]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511613203. Google Scholar

[13]

R. I. McLachlan, G. Quispel and W. Reinout, Splitting methods,, Acta Numerica, 11 (2002), 341. doi: 10.1017/S0962492902000053. Google Scholar

[14]

F. Müller, Splitting error estimation for micro-physical-multiphase chemical systems in meso-scale air quality models,, Atmospheric Environment, 35 (2001), 5749. doi: 10.1016/S1352-2310(01)00368-5. Google Scholar

[15]

B. Perthame, Transport Equations in Biology,, Springer, (2007). doi: 10.1007/978-3-7643-7842-4. Google Scholar

[16]

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods,, $3^{rd}$ edition, (1985). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[17]

G. Strang, On the construction and comparison of difference schemes,, SIAM Journal on Numerical Analysis, 5 (1968), 506. doi: 10.1137/0705041. Google Scholar

[18]

M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations,, Springer, (2011). doi: 10.1007/978-1-4419-7052-7. Google Scholar

[19]

M. Taylor, Partial Differential Equations III: Nonlinear Equations,, Springer, (2011). doi: 10.1007/978-1-4419-7049-7. Google Scholar

show all references

References:
[1]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243. doi: 10.1090/S0025-5718-1981-0628693-0. Google Scholar

[2]

M. Botchev, I.Faragó and Á. Havasi, Testing weighted splitting schemes on a one-column transport-chemistry model,, Large-Scale Scientific Computing, (2014), 295. doi: 10.1007/978-3-540-24588-9_33. Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010). doi: 10.1090/gsm/019. Google Scholar

[4]

A. Gerisch and J. G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models,, Applied Numerical Mathematics, 42 (2002), 159. doi: 10.1016/S0168-9274(01)00148-9. Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (2001). doi: 10.1007/978-3-642-61798-0. Google Scholar

[6]

J. Goodman, Convergence of the random vortex method,, Communications on Pure and Applied Mathematics, 40 (1987), 189. doi: 10.1002/cpa.3160400204. Google Scholar

[7]

H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation,, Mathematics of Computation, (). Google Scholar

[8]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[9]

D. Lanser, J. G. Blom and J. G. Verwer, Time integration of the shallow water equations in spherical geometry,, Journal of Computational Physics, 171 (2001), 373. doi: 10.1006/jcph.2001.6802. Google Scholar

[10]

E. H. Lieb and M. Loss, Analysis,, $2^{nd}$ edition, (2001). doi: 10.1090/gsm/014. Google Scholar

[11]

J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations,, Mathematics of Computation, (). Google Scholar

[12]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511613203. Google Scholar

[13]

R. I. McLachlan, G. Quispel and W. Reinout, Splitting methods,, Acta Numerica, 11 (2002), 341. doi: 10.1017/S0962492902000053. Google Scholar

[14]

F. Müller, Splitting error estimation for micro-physical-multiphase chemical systems in meso-scale air quality models,, Atmospheric Environment, 35 (2001), 5749. doi: 10.1016/S1352-2310(01)00368-5. Google Scholar

[15]

B. Perthame, Transport Equations in Biology,, Springer, (2007). doi: 10.1007/978-3-7643-7842-4. Google Scholar

[16]

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods,, $3^{rd}$ edition, (1985). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[17]

G. Strang, On the construction and comparison of difference schemes,, SIAM Journal on Numerical Analysis, 5 (1968), 506. doi: 10.1137/0705041. Google Scholar

[18]

M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations,, Springer, (2011). doi: 10.1007/978-1-4419-7052-7. Google Scholar

[19]

M. Taylor, Partial Differential Equations III: Nonlinear Equations,, Springer, (2011). doi: 10.1007/978-1-4419-7049-7. Google Scholar

[1]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[2]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

[3]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[4]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[5]

Alan Mackey, Theodore Kolokolnikov, Andrea L. Bertozzi. Two-species particle aggregation and stability of co-dimension one solutions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1411-1436. doi: 10.3934/dcdsb.2014.19.1411

[6]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[7]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic & Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

[8]

Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks & Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113

[9]

Raffaele D’Ambrosio, Giuseppe De Martino, Beatrice Paternoster. A symmetric nearly preserving general linear method for Hamiltonian problems. Conference Publications, 2015, 2015 (special) : 330-339. doi: 10.3934/proc.2015.0330

[10]

Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019029

[11]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[12]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[13]

Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669

[14]

Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

[15]

Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053

[16]

Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329

[17]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[18]

Alexey G. Mazko. Positivity, robust stability and comparison of dynamic systems. Conference Publications, 2011, 2011 (Special) : 1042-1051. doi: 10.3934/proc.2011.2011.1042

[19]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[20]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]