October  2016, 21(8): 2785-2809. doi: 10.3934/dcdsb.2016073

A reaction-convection-diffusion model for cholera spatial dynamics

1. 

Washington State University, Department of Mathematics and Statistics, Pullman, WA 99164-3113

2. 

NSF Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, United States

3. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403

Received  September 2015 Revised  November 2015 Published  September 2016

In this paper, we propose a general partial differential equation (PDE) model of cholera epidemics that extends previous mathematical cholera studies. Our new formation concerns the impact of the bacterial and human diffusion, bacterial convection, and their interaction with the intrinsic bacterial growth and multiple disease transmission pathways. A sensitivity analysis for a few key model parameters indicates the significance of diffusion and convection in shaping cholera epidemics. We then investigate the traveling wave solutions of our PDE model based on analytical derivation and numerical simulation, with a focus on the interplay of different biological, environmental and physical factors that determines the spatial spreading speeds of cholera. In addition, disease threshold dynamics are studied by computing the basic reproduction number associated with the PDE model, using both asymptotic analysis and numerical calculation.
Citation: Xueying Wang, Drew Posny, Jin Wang. A reaction-convection-diffusion model for cholera spatial dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2785-2809. doi: 10.3934/dcdsb.2016073
References:
[1]

D. Aronson, A comparison method for stability analysis of nonlinear parabolic problems,, SIAM Review, 20 (1978), 245. doi: 10.1137/1020038. Google Scholar

[2]

J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: an epidemic model,, Lancet, 377 (2011), 1248. doi: 10.1016/S0140-6736(11)60273-0. Google Scholar

[3]

D. Butler, Cholera tightens grip on Haiti,, Nature, 468 (2010), 483. doi: 10.1038/468483a. Google Scholar

[4]

S. F. Dowell and C. R. Braden, Implications of the introduction of cholera to Haiti,, Emerg. Infect. Dis., 17 (2011), 1299. doi: 10.3201/eid1707.110625. Google Scholar

[5]

E. I. Jury and M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems,, IEEE Trans. Automat. Control, 26 (1981), 444. doi: 10.1109/TAC.1981.1102589. Google Scholar

[6]

M. Bani-Yaghoub, R. Gautam, Z. Shuai, P. van den Driessche and R. Ivanek, Reproduction numbers for infections with free-living pathogens growing in the environment,, J Biol. Dyn., 6 (2012), 923. doi: 10.1080/17513758.2012.693206. Google Scholar

[7]

E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe and A. Rinaldo, On spatially explicit models of cholera epidemics,, J R. Soc. Interface, 7 (2010), 321. doi: 10.1098/rsif.2009.0204. Google Scholar

[8]

D. L. Chao, M. E. Halloran and I. M. Longini Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world,, Proc. Natl. Acad. Sci., 108 (2011), 7081. doi: 10.1073/pnas.1102149108. Google Scholar

[9]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir,, BMC Infect. Dis., 1 (2001). Google Scholar

[10]

L. Ellwein, H. Tran, C. Zapata, V. Novak and M. Olufsen, Sensitivity analysis and model assessment: Mathematical models for arterial blood flow and blood pressure,, J. Cardiovasc. Eng., 8 (2008), 94. doi: 10.1007/s10558-007-9047-3. Google Scholar

[11]

M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modeling the spread of carrier-dependent infectious diseases with environmental effect,, Appl. Math. Comput, 152 (2004), 385. doi: 10.1016/S0096-3003(03)00564-2. Google Scholar

[12]

Y. H. Grad, J. C. Miller and M. Lipsitch, Cholera modeling: Challenges to quantitative analysis and predicting the impacts of interventions,, Epidemiology, 23 (2012), 523. doi: 10.1097/EDE.0b013e3182572581. Google Scholar

[13]

D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?,, PLoS Medicine, 3 (2006). doi: 10.1371/journal.pmed.0030007. Google Scholar

[14]

S.-B. Hsu, F.-B. Wang and X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats,, J. Differential Equations, 255 (2013), 265. doi: 10.1016/j.jde.2013.04.006. Google Scholar

[15]

M. Jensen, S. M. Faruque, J. J. Mekalanos and B. Levin, Modeling the role of bacteriophage in the control of cholera outbreaks,, Proc. Nat. Acad. Sci. 103 (2006), 103 (2006), 4652. doi: 10.1073/pnas.0600166103. Google Scholar

[16]

R. I. Joh, H. Wang, H. Weiss and J. S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological threshold,, Bull. Math. Biol., 71 (2009), 845. doi: 10.1007/s11538-008-9384-4. Google Scholar

[17]

C. Kapp, Zimbabwe's humanitarian crisis worsens,, Lancet, 373 (2009). doi: 10.1016/S0140-6736(09)60151-3. Google Scholar

[18]

S. Kabir, Cholera vaccines: The current status and problems,, Rev. Med. Microbiol., 16 (2005), 101. doi: 10.1097/01.revmedmi.0000174307.33651.81. Google Scholar

[19]

K. Yamazaki and X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model,, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1297. doi: 10.3934/dcdsb.2016.21.1297. Google Scholar

[20]

S. Liao and J. Wang, Stability analysis and application of a mathematical cholera model,, Math. Biosci. Eng., 8 (2011), 733. doi: 10.3934/mbe.2011.8.733. Google Scholar

[21]

J. Lin, V. Andreasen, R. Casagrandi and S. A. Levin, Traveling waves in a model of influenza A drift,, J. Theor. Biol., 222 (2003), 437. doi: 10.1016/S0022-5193(03)00056-0. Google Scholar

[22]

C. Mugero and A. Hoque, Review of Cholera Epidemic in South Africa with Focus on KwaZulu-Natal Province,, Technical Report, (2001). Google Scholar

[23]

Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith and J. G. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe,, Proc. Natl. Acad. Sci., 108 (2011), 8767. Google Scholar

[24]

J. D. Murray, Mathematical Biology,, Springer, (2003). doi: 10.1007/b98869. Google Scholar

[25]

R. L. M. Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera,, Bull. Math. Biol., 72 (2010), 2004. doi: 10.1007/s11538-010-9521-8. Google Scholar

[26]

R. Piarroux, R. Barrais, B. Faucher, R. Haus, M. Piarroux, J. Gaudart, R. Magloire and D. Raoult, Understanding the cholera epidemic, Haiti,, Emerg. Infect. Dis., 17 (2011), 1161. doi: 10.3201/eid1707.110059. Google Scholar

[27]

L. Righetto, E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe and A. Rinaldo, Modeling human movement in a cholera speading along fluvial systems,, Ecohydrology, 4 (2011), 49. Google Scholar

[28]

A. Rinaldo, E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch, M. Gatto, R. Casagrandi, M. Murray, S. M. Vesenbeckh and I. Rodriguez-Iturbe, Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections,, Proc. Natl. Acad. Sci., 109 (2012), 6602. doi: 10.1073/pnas.1203333109. Google Scholar

[29]

J. Reidl and K. E. Klose, Vibrio cholerae and cholera: out of the water and into the host,, FEMS Microbiol. Rev, 26 (2002), 125. Google Scholar

[30]

S. L. Robertson, M. C. Eisenberg and J. H. Tiend, Heterogeneity in multiple transmission pathways: Modelling the spread of cholera and other waterborne disease in networks with a common water source,, J. Biol. Dyn., 7 (2013), 254. doi: 10.1080/17513758.2013.853844. Google Scholar

[31]

D. A. Sack, R. Sack and C.-L. Chaignat, Getting serious about cholera,, New Engl. J. Med., 355 (2006), 649. doi: 10.1056/NEJMp068144. Google Scholar

[32]

Z. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity,, Bull. Math. Biol., 74 (2012), 2423. doi: 10.1007/s11538-012-9759-4. Google Scholar

[33]

Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions,, SIAM J. Appl. Math., 73 (2013), 1513. doi: 10.1137/120876642. Google Scholar

[34]

Z. Shuai, J. A. P. Heesterbeek and P. van den Driessche, Extending the type reproduction number to infectious disease control targeting contacts between types,, J. Math. Biol., 67 (2013), 1067. doi: 10.1007/s00285-012-0579-9. Google Scholar

[35]

J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera,, Discret. Contin. Dyn. S., (2013), 747. doi: 10.3934/proc.2013.2013.747. Google Scholar

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188. doi: 10.1137/080732870. Google Scholar

[37]

J. P. Tian and J. Wang, Global stability for cholera epidemic models,, Math. Biosci., 232 (2011), 31. doi: 10.1016/j.mbs.2011.04.001. Google Scholar

[38]

J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model,, Bull. Math. Biol., 72 (2010), 1506. doi: 10.1007/s11538-010-9507-6. Google Scholar

[39]

J. H. Tien, H. N. Poinar, D. N. Fisman and D. J. Earn, Herald Waves of Cholera in Nineteenth Century London,, J. R. Soc., 8 (2011), 756. doi: 10.1098/rsif.2010.0494. Google Scholar

[40]

A. R. Tuite, J. H. Tien, M. C. Eisenberg, D. J. D. Earn, J. Ma and D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions,, Ann. Intern. Med., 154 (2011), 593. doi: 10.7326/0003-4819-154-9-201105030-00334. Google Scholar

[41]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[42]

J. Wang and S. Liao, A generalized cholera model and epidemic/endemic analysis,, J. Biol. Dyn., 6 (2012), 568. doi: 10.1080/17513758.2012.658089. Google Scholar

[43]

X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement,, J. Biol. Dyn., 9 (2015), 233. doi: 10.1080/17513758.2014.974696. Google Scholar

[44]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,, SIAM J. Appl. Dyn. S., 11 (2012), 1652. doi: 10.1137/120872942. Google Scholar

[45]

, World Health Organization (WHO), web page: , (). Google Scholar

[46]

, WHO, web page: , (). Google Scholar

[47]

, WHO, web page: , (). Google Scholar

show all references

References:
[1]

D. Aronson, A comparison method for stability analysis of nonlinear parabolic problems,, SIAM Review, 20 (1978), 245. doi: 10.1137/1020038. Google Scholar

[2]

J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: an epidemic model,, Lancet, 377 (2011), 1248. doi: 10.1016/S0140-6736(11)60273-0. Google Scholar

[3]

D. Butler, Cholera tightens grip on Haiti,, Nature, 468 (2010), 483. doi: 10.1038/468483a. Google Scholar

[4]

S. F. Dowell and C. R. Braden, Implications of the introduction of cholera to Haiti,, Emerg. Infect. Dis., 17 (2011), 1299. doi: 10.3201/eid1707.110625. Google Scholar

[5]

E. I. Jury and M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems,, IEEE Trans. Automat. Control, 26 (1981), 444. doi: 10.1109/TAC.1981.1102589. Google Scholar

[6]

M. Bani-Yaghoub, R. Gautam, Z. Shuai, P. van den Driessche and R. Ivanek, Reproduction numbers for infections with free-living pathogens growing in the environment,, J Biol. Dyn., 6 (2012), 923. doi: 10.1080/17513758.2012.693206. Google Scholar

[7]

E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe and A. Rinaldo, On spatially explicit models of cholera epidemics,, J R. Soc. Interface, 7 (2010), 321. doi: 10.1098/rsif.2009.0204. Google Scholar

[8]

D. L. Chao, M. E. Halloran and I. M. Longini Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world,, Proc. Natl. Acad. Sci., 108 (2011), 7081. doi: 10.1073/pnas.1102149108. Google Scholar

[9]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir,, BMC Infect. Dis., 1 (2001). Google Scholar

[10]

L. Ellwein, H. Tran, C. Zapata, V. Novak and M. Olufsen, Sensitivity analysis and model assessment: Mathematical models for arterial blood flow and blood pressure,, J. Cardiovasc. Eng., 8 (2008), 94. doi: 10.1007/s10558-007-9047-3. Google Scholar

[11]

M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modeling the spread of carrier-dependent infectious diseases with environmental effect,, Appl. Math. Comput, 152 (2004), 385. doi: 10.1016/S0096-3003(03)00564-2. Google Scholar

[12]

Y. H. Grad, J. C. Miller and M. Lipsitch, Cholera modeling: Challenges to quantitative analysis and predicting the impacts of interventions,, Epidemiology, 23 (2012), 523. doi: 10.1097/EDE.0b013e3182572581. Google Scholar

[13]

D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?,, PLoS Medicine, 3 (2006). doi: 10.1371/journal.pmed.0030007. Google Scholar

[14]

S.-B. Hsu, F.-B. Wang and X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats,, J. Differential Equations, 255 (2013), 265. doi: 10.1016/j.jde.2013.04.006. Google Scholar

[15]

M. Jensen, S. M. Faruque, J. J. Mekalanos and B. Levin, Modeling the role of bacteriophage in the control of cholera outbreaks,, Proc. Nat. Acad. Sci. 103 (2006), 103 (2006), 4652. doi: 10.1073/pnas.0600166103. Google Scholar

[16]

R. I. Joh, H. Wang, H. Weiss and J. S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological threshold,, Bull. Math. Biol., 71 (2009), 845. doi: 10.1007/s11538-008-9384-4. Google Scholar

[17]

C. Kapp, Zimbabwe's humanitarian crisis worsens,, Lancet, 373 (2009). doi: 10.1016/S0140-6736(09)60151-3. Google Scholar

[18]

S. Kabir, Cholera vaccines: The current status and problems,, Rev. Med. Microbiol., 16 (2005), 101. doi: 10.1097/01.revmedmi.0000174307.33651.81. Google Scholar

[19]

K. Yamazaki and X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model,, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1297. doi: 10.3934/dcdsb.2016.21.1297. Google Scholar

[20]

S. Liao and J. Wang, Stability analysis and application of a mathematical cholera model,, Math. Biosci. Eng., 8 (2011), 733. doi: 10.3934/mbe.2011.8.733. Google Scholar

[21]

J. Lin, V. Andreasen, R. Casagrandi and S. A. Levin, Traveling waves in a model of influenza A drift,, J. Theor. Biol., 222 (2003), 437. doi: 10.1016/S0022-5193(03)00056-0. Google Scholar

[22]

C. Mugero and A. Hoque, Review of Cholera Epidemic in South Africa with Focus on KwaZulu-Natal Province,, Technical Report, (2001). Google Scholar

[23]

Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith and J. G. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe,, Proc. Natl. Acad. Sci., 108 (2011), 8767. Google Scholar

[24]

J. D. Murray, Mathematical Biology,, Springer, (2003). doi: 10.1007/b98869. Google Scholar

[25]

R. L. M. Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera,, Bull. Math. Biol., 72 (2010), 2004. doi: 10.1007/s11538-010-9521-8. Google Scholar

[26]

R. Piarroux, R. Barrais, B. Faucher, R. Haus, M. Piarroux, J. Gaudart, R. Magloire and D. Raoult, Understanding the cholera epidemic, Haiti,, Emerg. Infect. Dis., 17 (2011), 1161. doi: 10.3201/eid1707.110059. Google Scholar

[27]

L. Righetto, E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe and A. Rinaldo, Modeling human movement in a cholera speading along fluvial systems,, Ecohydrology, 4 (2011), 49. Google Scholar

[28]

A. Rinaldo, E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch, M. Gatto, R. Casagrandi, M. Murray, S. M. Vesenbeckh and I. Rodriguez-Iturbe, Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections,, Proc. Natl. Acad. Sci., 109 (2012), 6602. doi: 10.1073/pnas.1203333109. Google Scholar

[29]

J. Reidl and K. E. Klose, Vibrio cholerae and cholera: out of the water and into the host,, FEMS Microbiol. Rev, 26 (2002), 125. Google Scholar

[30]

S. L. Robertson, M. C. Eisenberg and J. H. Tiend, Heterogeneity in multiple transmission pathways: Modelling the spread of cholera and other waterborne disease in networks with a common water source,, J. Biol. Dyn., 7 (2013), 254. doi: 10.1080/17513758.2013.853844. Google Scholar

[31]

D. A. Sack, R. Sack and C.-L. Chaignat, Getting serious about cholera,, New Engl. J. Med., 355 (2006), 649. doi: 10.1056/NEJMp068144. Google Scholar

[32]

Z. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity,, Bull. Math. Biol., 74 (2012), 2423. doi: 10.1007/s11538-012-9759-4. Google Scholar

[33]

Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions,, SIAM J. Appl. Math., 73 (2013), 1513. doi: 10.1137/120876642. Google Scholar

[34]

Z. Shuai, J. A. P. Heesterbeek and P. van den Driessche, Extending the type reproduction number to infectious disease control targeting contacts between types,, J. Math. Biol., 67 (2013), 1067. doi: 10.1007/s00285-012-0579-9. Google Scholar

[35]

J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera,, Discret. Contin. Dyn. S., (2013), 747. doi: 10.3934/proc.2013.2013.747. Google Scholar

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188. doi: 10.1137/080732870. Google Scholar

[37]

J. P. Tian and J. Wang, Global stability for cholera epidemic models,, Math. Biosci., 232 (2011), 31. doi: 10.1016/j.mbs.2011.04.001. Google Scholar

[38]

J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model,, Bull. Math. Biol., 72 (2010), 1506. doi: 10.1007/s11538-010-9507-6. Google Scholar

[39]

J. H. Tien, H. N. Poinar, D. N. Fisman and D. J. Earn, Herald Waves of Cholera in Nineteenth Century London,, J. R. Soc., 8 (2011), 756. doi: 10.1098/rsif.2010.0494. Google Scholar

[40]

A. R. Tuite, J. H. Tien, M. C. Eisenberg, D. J. D. Earn, J. Ma and D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions,, Ann. Intern. Med., 154 (2011), 593. doi: 10.7326/0003-4819-154-9-201105030-00334. Google Scholar

[41]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[42]

J. Wang and S. Liao, A generalized cholera model and epidemic/endemic analysis,, J. Biol. Dyn., 6 (2012), 568. doi: 10.1080/17513758.2012.658089. Google Scholar

[43]

X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement,, J. Biol. Dyn., 9 (2015), 233. doi: 10.1080/17513758.2014.974696. Google Scholar

[44]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,, SIAM J. Appl. Dyn. S., 11 (2012), 1652. doi: 10.1137/120872942. Google Scholar

[45]

, World Health Organization (WHO), web page: , (). Google Scholar

[46]

, WHO, web page: , (). Google Scholar

[47]

, WHO, web page: , (). Google Scholar

[1]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[2]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[3]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[4]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[5]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[6]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[7]

Jinhuo Luo, Jin Wang, Hao Wang. Seasonal forcing and exponential threshold incidence in cholera dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2261-2290. doi: 10.3934/dcdsb.2017095

[8]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[9]

Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227

[10]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[11]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[12]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[13]

Wen Tan, Chunyou Sun. Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6035-6067. doi: 10.3934/dcds.2017260

[14]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[15]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[16]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[17]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[18]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[19]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[20]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]