October  2016, 21(8): 2745-2766. doi: 10.3934/dcdsb.2016071

On the compressible Navier-Stokes-Korteweg equations

1. 

Department of Mathematics, College of Sciences, Hohai University, Nanjing 210098

2. 

Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023

Received  October 2015 Revised  July 2016 Published  September 2016

In this paper, we consider compressible Navier-Stokes-Korteweg (N-S-K) equations with more general pressure laws, that is the pressure $P$ is non-monotone. We prove the stability of weak solutions in the periodic domain $\Omega=\mathbb{T}^{N}$, when $N = 2,3$. Utilizing an interesting Sobolev inequality to tackle the complicated Korteweg term, we obtain the global existence of weak solutions in one dimensional case. Moreover, when the initial data is compactly supported in the whole space $\mathbb{R}$, we prove the compressible N-S-K equations will blow-up in finite time.
Citation: Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071
References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D Viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211. doi: 10.1007/s00220-003-0859-8. Google Scholar

[2]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models,, J. Math. Pures Appl., 86 (2006), 362. doi: 10.1016/j.matpur.2006.06.005. Google Scholar

[3]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Commun. Partial Diff. Eqns., 28 (2003), 843. doi: 10.1081/PDE-120020499. Google Scholar

[4]

Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities,, Manuscripta Math., 120 (2006), 91. doi: 10.1007/s00229-006-0637-y. Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 97. doi: 10.1016/S0294-1449(00)00056-1. Google Scholar

[6]

B. Ducomet, E. Feireisl, A. Petzeltová and I. Straškraba, Global in time weak solutions for compressible barotropic self-gravitating fluids,, Discrete Contin. Dyn. Syst., 11 (2004), 113. doi: 10.3934/dcds.2004.11.113. Google Scholar

[7]

B. Ducomet, S. Nečasová and A. Vasseur, On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities,, Z. Angew. Math. Phys., 61 (2010), 479. doi: 10.1007/s00033-009-0035-x. Google Scholar

[8]

B. Ducomet, S. Nečasová and A. Vasseur, On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas,, J. Math. Fluid Mech., 13 (2011), 191. doi: 10.1007/s00021-009-0010-5. Google Scholar

[9]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working,, Arch. Rational Mech. Anal., 88 (1985), 95. doi: 10.1007/BF00250907. Google Scholar

[10]

I. Gamba, A. Jüngel and A. Vasseur, Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations,, J. Differential Equations, 247 (2009), 3117. doi: 10.1016/j.jde.2009.09.001. Google Scholar

[11]

P. Germain and P. G. Lefloch, The finite energy method for compressible fluids-The Naiver-Stokes-Korteweg model,, Comm. Pure Appl. Math., 69 (2016), 3. doi: 10.1002/cpa.21622. Google Scholar

[12]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, Commun. Partial Diff. Eqns., 37 (2012), 2165. doi: 10.1080/03605302.2012.696296. Google Scholar

[13]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223. doi: 10.1007/s00021-009-0013-2. Google Scholar

[14]

H. Hattori and D. Li, Global solutions of a high-dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84. doi: 10.1006/jmaa.1996.0069. Google Scholar

[15]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type,, J. Partial Diff. Eqns, 9 (1996), 323. Google Scholar

[16]

L. Hsiao and H. L. Li, Dissipation and dispersion approximation to hydrodynamical equations and asymptotic limit,, J. Partial Diff. Eqns, 21 (2008), 59. Google Scholar

[17]

S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Methods Appl. Anal., 12 (2005), 239. doi: 10.4310/MAA.2005.v12.n3.a2. Google Scholar

[18]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025. doi: 10.1137/090776068. Google Scholar

[19]

M. Kotschote, Strong solutions for a compressible fluid of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 25 (2008), 679. doi: 10.1016/j.anihpc.2007.03.005. Google Scholar

[20]

H. L. Li, J. Li and Z. P. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401. doi: 10.1007/s00220-008-0495-4. Google Scholar

[21]

P. L. Lions, Mathematical Topics in Fluid Dynamics 2, Compressible Models,, Oxford Science Publication, (1998). Google Scholar

[22]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[23]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations,, Comm. Partial Diff. Eqns, 32 (2007), 431. doi: 10.1080/03605300600857079. Google Scholar

[24]

Z. Tan, X. Zhang and H. Q. Wang, Asymptotic behavior of Navier-Stokes-Korteweg with friction in $R^3$,, Discrete Contin. Dyn. Syst., 34 (2014), 2243. doi: 10.3934/dcds.2014.34.2243. Google Scholar

[25]

T. Tang and J. Kuang, Blow-up of compressible Naiver-Stokes-Korteweg equations,, Acta Applicanda Mathematicae, 130 (2014), 1. doi: 10.1007/s10440-013-9836-1. Google Scholar

[26]

T. Tang, Blow-up of smooth solutions to the compressible barotropic Navier-Stokes-Korteweg equations on bounded domains,, Acta Applicanda Mathematicae, 136 (2015), 55. doi: 10.1007/s10440-014-9884-1. Google Scholar

[27]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256. doi: 10.1016/j.jmaa.2011.01.006. Google Scholar

[28]

A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,, Comm. Math. Phys, 103 (1986), 259. doi: 10.1007/BF01206939. Google Scholar

[29]

Z. P. Xin, Blow-up of smooth solution to the compressible Naiver-Stokes equations with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. Google Scholar

[30]

T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329. doi: 10.1007/s00220-002-0703-6. Google Scholar

[31]

Y. H. Zhang and Z. Tan, Blow-up of smooth solutions to the compressible fluid models of Korteweg type,, Acta Math. Sin. (Engl. Ser.), 28 (2012), 645. doi: 10.1007/s10114-012-9042-5. Google Scholar

show all references

References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D Viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211. doi: 10.1007/s00220-003-0859-8. Google Scholar

[2]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models,, J. Math. Pures Appl., 86 (2006), 362. doi: 10.1016/j.matpur.2006.06.005. Google Scholar

[3]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Commun. Partial Diff. Eqns., 28 (2003), 843. doi: 10.1081/PDE-120020499. Google Scholar

[4]

Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities,, Manuscripta Math., 120 (2006), 91. doi: 10.1007/s00229-006-0637-y. Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 97. doi: 10.1016/S0294-1449(00)00056-1. Google Scholar

[6]

B. Ducomet, E. Feireisl, A. Petzeltová and I. Straškraba, Global in time weak solutions for compressible barotropic self-gravitating fluids,, Discrete Contin. Dyn. Syst., 11 (2004), 113. doi: 10.3934/dcds.2004.11.113. Google Scholar

[7]

B. Ducomet, S. Nečasová and A. Vasseur, On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities,, Z. Angew. Math. Phys., 61 (2010), 479. doi: 10.1007/s00033-009-0035-x. Google Scholar

[8]

B. Ducomet, S. Nečasová and A. Vasseur, On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas,, J. Math. Fluid Mech., 13 (2011), 191. doi: 10.1007/s00021-009-0010-5. Google Scholar

[9]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working,, Arch. Rational Mech. Anal., 88 (1985), 95. doi: 10.1007/BF00250907. Google Scholar

[10]

I. Gamba, A. Jüngel and A. Vasseur, Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations,, J. Differential Equations, 247 (2009), 3117. doi: 10.1016/j.jde.2009.09.001. Google Scholar

[11]

P. Germain and P. G. Lefloch, The finite energy method for compressible fluids-The Naiver-Stokes-Korteweg model,, Comm. Pure Appl. Math., 69 (2016), 3. doi: 10.1002/cpa.21622. Google Scholar

[12]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, Commun. Partial Diff. Eqns., 37 (2012), 2165. doi: 10.1080/03605302.2012.696296. Google Scholar

[13]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223. doi: 10.1007/s00021-009-0013-2. Google Scholar

[14]

H. Hattori and D. Li, Global solutions of a high-dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84. doi: 10.1006/jmaa.1996.0069. Google Scholar

[15]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type,, J. Partial Diff. Eqns, 9 (1996), 323. Google Scholar

[16]

L. Hsiao and H. L. Li, Dissipation and dispersion approximation to hydrodynamical equations and asymptotic limit,, J. Partial Diff. Eqns, 21 (2008), 59. Google Scholar

[17]

S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Methods Appl. Anal., 12 (2005), 239. doi: 10.4310/MAA.2005.v12.n3.a2. Google Scholar

[18]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025. doi: 10.1137/090776068. Google Scholar

[19]

M. Kotschote, Strong solutions for a compressible fluid of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 25 (2008), 679. doi: 10.1016/j.anihpc.2007.03.005. Google Scholar

[20]

H. L. Li, J. Li and Z. P. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401. doi: 10.1007/s00220-008-0495-4. Google Scholar

[21]

P. L. Lions, Mathematical Topics in Fluid Dynamics 2, Compressible Models,, Oxford Science Publication, (1998). Google Scholar

[22]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[23]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations,, Comm. Partial Diff. Eqns, 32 (2007), 431. doi: 10.1080/03605300600857079. Google Scholar

[24]

Z. Tan, X. Zhang and H. Q. Wang, Asymptotic behavior of Navier-Stokes-Korteweg with friction in $R^3$,, Discrete Contin. Dyn. Syst., 34 (2014), 2243. doi: 10.3934/dcds.2014.34.2243. Google Scholar

[25]

T. Tang and J. Kuang, Blow-up of compressible Naiver-Stokes-Korteweg equations,, Acta Applicanda Mathematicae, 130 (2014), 1. doi: 10.1007/s10440-013-9836-1. Google Scholar

[26]

T. Tang, Blow-up of smooth solutions to the compressible barotropic Navier-Stokes-Korteweg equations on bounded domains,, Acta Applicanda Mathematicae, 136 (2015), 55. doi: 10.1007/s10440-014-9884-1. Google Scholar

[27]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256. doi: 10.1016/j.jmaa.2011.01.006. Google Scholar

[28]

A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,, Comm. Math. Phys, 103 (1986), 259. doi: 10.1007/BF01206939. Google Scholar

[29]

Z. P. Xin, Blow-up of smooth solution to the compressible Naiver-Stokes equations with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. Google Scholar

[30]

T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329. doi: 10.1007/s00220-002-0703-6. Google Scholar

[31]

Y. H. Zhang and Z. Tan, Blow-up of smooth solutions to the compressible fluid models of Korteweg type,, Acta Math. Sin. (Engl. Ser.), 28 (2012), 645. doi: 10.1007/s10114-012-9042-5. Google Scholar

[1]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[2]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[3]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[4]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[5]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[6]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[7]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[8]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[9]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[10]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[13]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[16]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[17]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[18]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[19]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[20]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]