October  2016, 21(8): 2587-2599. doi: 10.3934/dcdsb.2016062

A new discrete Cucker-Smale flocking model under hierarchical leadership

1. 

Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan

2. 

Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan

Received  July 2015 Revised  May 2016 Published  September 2016

This paper studies the flocking behavior in a new discrete-time Cucker-Smale model under hierarchical leadership. The features of this model are that each individual has its own intrinsic nonlinear dynamics and the interaction between individuals follows a hierarchical leadership structure. Based on a specific matrix norm, we prove that the conditional flocking indeed occurs. Numerical experiments are given to confirm the theoretical results.
Citation: Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062
References:
[1]

F. Cucker and J. Dong, A general collision-avoiding flocking framework,, IEEE Trans. Automat. Control, 56 (2011), 1124. doi: 10.1109/TAC.2011.2107113.

[2]

F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the bias-variance problem,, Found. Comput. Math., 2 (2002), 413. doi: 10.1007/s102080010030.

[3]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842.

[4]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197. doi: 10.1007/s11537-007-0647-x.

[5]

F. Dalmao and E. Moedecki, Cucker-Smale flocking under hierarchical leadership and random interactions,, SIAM J. Appl. Math., 71 (2011), 1307. doi: 10.1137/100785910.

[6]

J. Dong, Flocking under hierarchical leadership with a free-will leader,, Internat. J. Robust Nonlinear Control, 23 (2013), 1891.

[7]

S. Ha, T. Ha and J. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity coupling,, IEEE Trans. Automat. Control, 55 (2010), 1679. doi: 10.1109/TAC.2010.2046113.

[8]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511840371.

[9]

R. A. Horn and C. R. Johnson, Matrix Analysis,, second edition, (2013).

[10]

Z. Li, Effectual leadership in flocks with hierarchy and individual preference,, Discrete Contin. Dyn. Syst., 34 (2014), 3683. doi: 10.3934/dcds.2014.34.3683.

[11]

Z. Li and S. Ha, Cucker-Smale flocking with alternating leaders,, Quart. Appl. Math., 73 (2015), 693. doi: 10.1090/qam/1401.

[12]

Z. Li, S. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership,, Math. Models Methods Appl. Sci., 24 (2014), 1389. doi: 10.1142/S0218202514500043.

[13]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with free-will agents,, Phys. A, 410 (2014), 205. doi: 10.1016/j.physa.2014.05.008.

[14]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies,, SIAM J. Appl. Math., 70 (2010), 3156. doi: 10.1137/100791774.

[15]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923. doi: 10.1007/s10955-011-0285-9.

[16]

J. Park, H. Kim and S. Ha, Cucker-Smale flocking with inter-particle bonding forces,, IEEE Trans. Automat. Control, 55 (2010), 2617. doi: 10.1109/TAC.2010.2061070.

[17]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2007), 694. doi: 10.1137/060673254.

[18]

Q. Song, F. Liu, J. Cao and J. Qiu, Cucker-Smale flocking with bounded cohesive and repulsive forces,, Abstr. Appl. Anal., (2013).

[19]

J. Zhou, X. Wu, W. Yu, M. Small and J. Lu, Flocking of multi-agent dynamical systems based on pseudo-leader mechanism,, Systems Control Lett., 61 (2012), 195. doi: 10.1016/j.sysconle.2011.10.006.

show all references

References:
[1]

F. Cucker and J. Dong, A general collision-avoiding flocking framework,, IEEE Trans. Automat. Control, 56 (2011), 1124. doi: 10.1109/TAC.2011.2107113.

[2]

F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the bias-variance problem,, Found. Comput. Math., 2 (2002), 413. doi: 10.1007/s102080010030.

[3]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842.

[4]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197. doi: 10.1007/s11537-007-0647-x.

[5]

F. Dalmao and E. Moedecki, Cucker-Smale flocking under hierarchical leadership and random interactions,, SIAM J. Appl. Math., 71 (2011), 1307. doi: 10.1137/100785910.

[6]

J. Dong, Flocking under hierarchical leadership with a free-will leader,, Internat. J. Robust Nonlinear Control, 23 (2013), 1891.

[7]

S. Ha, T. Ha and J. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity coupling,, IEEE Trans. Automat. Control, 55 (2010), 1679. doi: 10.1109/TAC.2010.2046113.

[8]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511840371.

[9]

R. A. Horn and C. R. Johnson, Matrix Analysis,, second edition, (2013).

[10]

Z. Li, Effectual leadership in flocks with hierarchy and individual preference,, Discrete Contin. Dyn. Syst., 34 (2014), 3683. doi: 10.3934/dcds.2014.34.3683.

[11]

Z. Li and S. Ha, Cucker-Smale flocking with alternating leaders,, Quart. Appl. Math., 73 (2015), 693. doi: 10.1090/qam/1401.

[12]

Z. Li, S. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership,, Math. Models Methods Appl. Sci., 24 (2014), 1389. doi: 10.1142/S0218202514500043.

[13]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with free-will agents,, Phys. A, 410 (2014), 205. doi: 10.1016/j.physa.2014.05.008.

[14]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies,, SIAM J. Appl. Math., 70 (2010), 3156. doi: 10.1137/100791774.

[15]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923. doi: 10.1007/s10955-011-0285-9.

[16]

J. Park, H. Kim and S. Ha, Cucker-Smale flocking with inter-particle bonding forces,, IEEE Trans. Automat. Control, 55 (2010), 2617. doi: 10.1109/TAC.2010.2061070.

[17]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2007), 694. doi: 10.1137/060673254.

[18]

Q. Song, F. Liu, J. Cao and J. Qiu, Cucker-Smale flocking with bounded cohesive and repulsive forces,, Abstr. Appl. Anal., (2013).

[19]

J. Zhou, X. Wu, W. Yu, M. Small and J. Lu, Flocking of multi-agent dynamical systems based on pseudo-leader mechanism,, Systems Control Lett., 61 (2012), 195. doi: 10.1016/j.sysconle.2011.10.006.

[1]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[2]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[5]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[6]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[7]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[8]

Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019072

[9]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[10]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[11]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[12]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[13]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[14]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[15]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[16]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[17]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

[18]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[19]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[20]

Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019007

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]