September  2016, 21(7): 2129-2143. doi: 10.3934/dcdsb.2016040

Semi-Kolmogorov models for predation with indirect effects in random environments

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

3. 

221 Parker Hall, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849

Received  September 2015 Revised  February 2016 Published  August 2016

In this work we study semi-Kolmogorov models for predation with both the carrying capacities and the indirect effects varying with respect to randomly fluctuating environments. In particular, we consider one random semi-Kolmogorov system involving random and essentially bounded parameters, and one stochastic semi-Kolmogorov system involving white noise and stochastic parameters defined upon a continuous-time Markov chain. For both systems we investigate the existence and uniqueness of solutions, as well as positiveness and boundedness of solutions. For the random semi-Kolmogorov system we also obtain sufficient conditions for the existence of a global random attractor.
Citation: Tomás Caraballo, Renato Colucci, Xiaoying Han. Semi-Kolmogorov models for predation with indirect effects in random environments. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2129-2143. doi: 10.3934/dcdsb.2016040
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998). doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

Y. Asai and P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations,, Commun. Appl. Analysis, 17 (2013), 521. Google Scholar

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Analysis: Theory, 74 (2011), 6601. doi: 10.1016/j.na.2011.06.043. Google Scholar

[4]

B. Bolker, M. Holyoak, V. Krivan, L. Rowe and O. Schmitz, Connecting theoretical and empirical studies of trait-mediated interactions,, Ecology, 84 (2003), 1101. Google Scholar

[5]

J. L. Brooks and I. D. Stanley, Predation, body size, and composition of plankton,, Science, 150 (1965), 28. doi: 10.1126/science.150.3692.28. Google Scholar

[6]

D. Cariveau, R. E. Irwin, A. K. Brody, S. L. Garcia-Mayeya and A. Von der Ohe, Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits,, OIKOS, 104 (2004), 15. doi: 10.1111/j.0030-1299.2004.12641.x. Google Scholar

[7]

T. Caraballo, R. Colucci and X. Han, Non-autonomous dynamics of a semi-kolmogorov population model with periodic forcing,, Nonlinear Anal. Real World Appl., 31 (2016), 661. doi: 10.1016/j.nonrwa.2016.03.007. Google Scholar

[8]

T. Caraballo, R. Colucci and X. Han, Predation with indirect effects in Fluctuating Environments,, Nonlinear Dynamics, 84 (2016), 115. doi: 10.1007/s11071-015-2238-3. Google Scholar

[9]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise,, Front. Math. China, 3 (2008), 317. doi: 10.1007/s11464-008-0028-7. Google Scholar

[10]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems,, Nonlinear Analysis TMA, 64 (2006), 484. Google Scholar

[11]

J. E. Cohen, T. Luczak, C. M. Newman and Z. M. Zhou, Stochastic structure and nonlinear dynamics of food webs: qualitative stability in a lotka-volterra cascade model,, Proceedings of the Royal Society of London. Series B, 240 (1990), 607. doi: 10.1098/rspb.1990.0055. Google Scholar

[12]

R. Colucci, Coexistence in a one-predator, two-prey system with indirect effects,, Journal of Applied Mathematics, (2013). Google Scholar

[13]

R. Colucci and D. Nunez, Periodic orbits for a three-dimensional biological differential systems,, Abstract and Applied Analysis, (2013). Google Scholar

[14]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors,, Jahresber Dtsch Math-Ver, 117 (2015), 173. doi: 10.1365/s13291-015-0115-0. Google Scholar

[15]

N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competivey type under telegraph noise,, J. Diff. Equ., 257 (2014), 2078. doi: 10.1016/j.jde.2014.05.029. Google Scholar

[16]

N. H. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka-Volterra competition systems: Nonautonomous bistable case and the effect of telegraph noise,, J. Comput. Appl. Math., 170 (2004), 399. doi: 10.1016/j.cam.2004.02.001. Google Scholar

[17]

, Indirect effects affect ecosystem dynamics., , (2011). Google Scholar

[18]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, Stochastics Stochastics Rep., 59 (1996), 21. doi: 10.1080/17442509608834083. Google Scholar

[19]

J. Hulsman and F. J. Weissing, Biodiversity of Plankton by species oscillations and Chaos,, Nature, 402 (1999). Google Scholar

[20]

C. Jeffries, Stability of predation ecosystem models,, Ecology, 57 (1976), 1321. doi: 10.2307/1935058. Google Scholar

[21]

D. Jiang, Ningzhong Shi, A note on nonautonomous logistic equation with random perturbation,, J. Math. Anal. Appl., 303 (2005), 164. doi: 10.1016/j.jmaa.2004.08.027. Google Scholar

[22]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching,, J. Math. Anal. Appl., 334 (2007), 69. doi: 10.1016/j.jmaa.2006.12.032. Google Scholar

[23]

Q Luo and X. Mao, Stochastic population dynamics under regime switching II,, J. Math. Anal. Appl., 355 (2009), 577. doi: 10.1016/j.jmaa.2009.02.010. Google Scholar

[24]

P. E. Kloeden and E. Platen, Numerical Solutions to Stochastic Differential Equations,, Springer-Verlag, (1992). doi: 10.1007/978-3-662-12616-5. Google Scholar

[25]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society,, Providence, (2011). doi: 10.1090/surv/176. Google Scholar

[26]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006). doi: 10.1142/p473. Google Scholar

[27]

B. A. Menge, Indirect effects in marine rocky intertidal interaction webs: Patterns and importance,, Ecological Monographs, 65 (1995), 21. doi: 10.2307/2937158. Google Scholar

[28]

K. Rohde, Nonequilibrium Ecology,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511542152. Google Scholar

[29]

M. Slatkin, The dynamics of a population in a Markovian environment,, Ecology, 59 (1978), 249. doi: 10.2307/1936370. Google Scholar

[30]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment,, J. Math. Anal. Appl., 323 (2006), 938. doi: 10.1016/j.jmaa.2005.11.009. Google Scholar

[31]

M. R. Walsh and D. N. Reznick, Interactions between the direct and indirect effects of predators determine life history evolution in a killifish, Pnas,, www.pnas.org/cgi/doi/10.1073/pnas.0710051105., (). Google Scholar

[32]

J. T. Wootton, Indirect effects, prey susceptibility, and habitat selection: Impacts of birds on limpets and algae,, Ecology, 73 (1992), 981. doi: 10.2307/1940174. Google Scholar

[33]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, J. Math. Anal. Appl., 364 (2010), 104. doi: 10.1016/j.jmaa.2009.10.072. Google Scholar

[34]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM J. Appl. Math., 70 (2009), 641. doi: 10.1137/080719194. Google Scholar

[35]

C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems,, Nonlinear Analysis: Theory, 71 (2009). doi: 10.1016/j.na.2009.01.166. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998). doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

Y. Asai and P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations,, Commun. Appl. Analysis, 17 (2013), 521. Google Scholar

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Analysis: Theory, 74 (2011), 6601. doi: 10.1016/j.na.2011.06.043. Google Scholar

[4]

B. Bolker, M. Holyoak, V. Krivan, L. Rowe and O. Schmitz, Connecting theoretical and empirical studies of trait-mediated interactions,, Ecology, 84 (2003), 1101. Google Scholar

[5]

J. L. Brooks and I. D. Stanley, Predation, body size, and composition of plankton,, Science, 150 (1965), 28. doi: 10.1126/science.150.3692.28. Google Scholar

[6]

D. Cariveau, R. E. Irwin, A. K. Brody, S. L. Garcia-Mayeya and A. Von der Ohe, Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits,, OIKOS, 104 (2004), 15. doi: 10.1111/j.0030-1299.2004.12641.x. Google Scholar

[7]

T. Caraballo, R. Colucci and X. Han, Non-autonomous dynamics of a semi-kolmogorov population model with periodic forcing,, Nonlinear Anal. Real World Appl., 31 (2016), 661. doi: 10.1016/j.nonrwa.2016.03.007. Google Scholar

[8]

T. Caraballo, R. Colucci and X. Han, Predation with indirect effects in Fluctuating Environments,, Nonlinear Dynamics, 84 (2016), 115. doi: 10.1007/s11071-015-2238-3. Google Scholar

[9]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise,, Front. Math. China, 3 (2008), 317. doi: 10.1007/s11464-008-0028-7. Google Scholar

[10]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems,, Nonlinear Analysis TMA, 64 (2006), 484. Google Scholar

[11]

J. E. Cohen, T. Luczak, C. M. Newman and Z. M. Zhou, Stochastic structure and nonlinear dynamics of food webs: qualitative stability in a lotka-volterra cascade model,, Proceedings of the Royal Society of London. Series B, 240 (1990), 607. doi: 10.1098/rspb.1990.0055. Google Scholar

[12]

R. Colucci, Coexistence in a one-predator, two-prey system with indirect effects,, Journal of Applied Mathematics, (2013). Google Scholar

[13]

R. Colucci and D. Nunez, Periodic orbits for a three-dimensional biological differential systems,, Abstract and Applied Analysis, (2013). Google Scholar

[14]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors,, Jahresber Dtsch Math-Ver, 117 (2015), 173. doi: 10.1365/s13291-015-0115-0. Google Scholar

[15]

N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competivey type under telegraph noise,, J. Diff. Equ., 257 (2014), 2078. doi: 10.1016/j.jde.2014.05.029. Google Scholar

[16]

N. H. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka-Volterra competition systems: Nonautonomous bistable case and the effect of telegraph noise,, J. Comput. Appl. Math., 170 (2004), 399. doi: 10.1016/j.cam.2004.02.001. Google Scholar

[17]

, Indirect effects affect ecosystem dynamics., , (2011). Google Scholar

[18]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, Stochastics Stochastics Rep., 59 (1996), 21. doi: 10.1080/17442509608834083. Google Scholar

[19]

J. Hulsman and F. J. Weissing, Biodiversity of Plankton by species oscillations and Chaos,, Nature, 402 (1999). Google Scholar

[20]

C. Jeffries, Stability of predation ecosystem models,, Ecology, 57 (1976), 1321. doi: 10.2307/1935058. Google Scholar

[21]

D. Jiang, Ningzhong Shi, A note on nonautonomous logistic equation with random perturbation,, J. Math. Anal. Appl., 303 (2005), 164. doi: 10.1016/j.jmaa.2004.08.027. Google Scholar

[22]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching,, J. Math. Anal. Appl., 334 (2007), 69. doi: 10.1016/j.jmaa.2006.12.032. Google Scholar

[23]

Q Luo and X. Mao, Stochastic population dynamics under regime switching II,, J. Math. Anal. Appl., 355 (2009), 577. doi: 10.1016/j.jmaa.2009.02.010. Google Scholar

[24]

P. E. Kloeden and E. Platen, Numerical Solutions to Stochastic Differential Equations,, Springer-Verlag, (1992). doi: 10.1007/978-3-662-12616-5. Google Scholar

[25]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society,, Providence, (2011). doi: 10.1090/surv/176. Google Scholar

[26]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006). doi: 10.1142/p473. Google Scholar

[27]

B. A. Menge, Indirect effects in marine rocky intertidal interaction webs: Patterns and importance,, Ecological Monographs, 65 (1995), 21. doi: 10.2307/2937158. Google Scholar

[28]

K. Rohde, Nonequilibrium Ecology,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511542152. Google Scholar

[29]

M. Slatkin, The dynamics of a population in a Markovian environment,, Ecology, 59 (1978), 249. doi: 10.2307/1936370. Google Scholar

[30]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment,, J. Math. Anal. Appl., 323 (2006), 938. doi: 10.1016/j.jmaa.2005.11.009. Google Scholar

[31]

M. R. Walsh and D. N. Reznick, Interactions between the direct and indirect effects of predators determine life history evolution in a killifish, Pnas,, www.pnas.org/cgi/doi/10.1073/pnas.0710051105., (). Google Scholar

[32]

J. T. Wootton, Indirect effects, prey susceptibility, and habitat selection: Impacts of birds on limpets and algae,, Ecology, 73 (1992), 981. doi: 10.2307/1940174. Google Scholar

[33]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, J. Math. Anal. Appl., 364 (2010), 104. doi: 10.1016/j.jmaa.2009.10.072. Google Scholar

[34]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM J. Appl. Math., 70 (2009), 641. doi: 10.1137/080719194. Google Scholar

[35]

C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems,, Nonlinear Analysis: Theory, 71 (2009). doi: 10.1016/j.na.2009.01.166. Google Scholar

[1]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[2]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[3]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[4]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[5]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[6]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[7]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[8]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[9]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[10]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019072

[11]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[12]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[13]

Jinfeng Wang, Hongxia Fan. Dynamics in a Rosenzweig-Macarthur predator-prey system with quiescence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 909-918. doi: 10.3934/dcdsb.2016.21.909

[14]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019036

[15]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[16]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[17]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[18]

Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

[19]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[20]

Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]