# American Institute of Mathematical Sciences

July  2016, 21(5): 1651-1669. doi: 10.3934/dcdsb.2016016

## Parallelization methods for solving three-temperature radiation-hydrodynamic problems

 1 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088, China, China

Received  November 2013 Revised  March 2014 Published  April 2016

An efficient parallelization method for numerically solving Lagrangian radiation hydrodynamic problems with three-temperature modeling on structural quadrilateral grids is presented. The three-temperature heat conduction equations are discretized by implicit scheme, and their computational cost are very expensive. Thus a parallel iterative method for three-temperature system of equations is constructed, which is based on domain decomposition for physical space, and combined with fixed point (Picard) nonlinear iteration to solve sub-domain problems. It can avoid global communication and can be naturally implemented on massive parallel computers. The space discretization of heat conduction equations uses the well-known local support operator method (LSOM). Numerical experiments show that the parallel iterative method preserves the same accuracy as the fully implicit scheme, and has high parallel efficiency and good stability, so it provides an effective solution procedure for numerical simulation of the radiation hydrodynamic problems on parallel computers.
Citation: Guangwei Yuan, Yanzhong Yao. Parallelization methods for solving three-temperature radiation-hydrodynamic problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1651-1669. doi: 10.3934/dcdsb.2016016
##### References:
 [1] C. N. Dawson, Q. Du and T. F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation,, Math. Comp., 57 (1991), 63. doi: 10.1090/S0025-5718-1991-1079011-4. Google Scholar [2] M. Dryja, Substructuring methods for parabolic problems,, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations(Moscow, (1991), 264. Google Scholar [3] S. Gunter and K. Lackner, A mixed implicit-explicit finite difference scheme for heat transport in magnetized plasmas,, Journal of Computational Physics, 228 (2009), 282. Google Scholar [4] E. Jamelot and P. C. Jr, Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation,, Journal of Computational Physics, 241 (2013), 445. doi: 10.1016/j.jcp.2013.01.026. Google Scholar [5] Yu. M. Laevsky and O. V. Rudenko, Splitting methods for parabolic problems in nonrectangular domains,, Appl. Math. Lett., 8 (1995), 9. doi: 10.1016/0893-9659(95)00077-4. Google Scholar [6] H. L. Liao, H. S. Shi and Z. Z. Sun, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations,, Science in China Series A: Mathematics, 52 (2009), 2362. doi: 10.1007/s11425-009-0040-8. Google Scholar [7] P. H. Maire, R. Abgrall, J. Breil and J. Ovadia, A centered Lagrangian scheme for multidimensional compressible flow problems,, SIAM Journal on Scientific Computing, 29 (2007), 1781. doi: 10.1137/050633019. Google Scholar [8] J. E. Morel, R. M. Roberts and M. J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral $r-z$ meshes,, Journal of Computational Physics, 144 (1998), 17. doi: 10.1006/jcph.1998.5981. Google Scholar [9] S. Ovtchinnikov and X. C. Cai, One-level Newton-Krylov-Schwarz algorithm for unsteady non-linear radiation diffusion problem,, Numerical Linear Algebra with Applications, 11 (2004), 867. doi: 10.1002/nla.386. Google Scholar [10] W. J. Rider and D. A. Knoll, Time step size selection for radiation diffusion calculations,, Journal of Computational Physics, 152 (1999), 790. doi: 10.1006/jcph.1999.6266. Google Scholar [11] M. Shashkov, Conservative Finite Difference Methods,, CRC Press, (1996). Google Scholar [12] Z. Q. Sheng, G. W. Yuan and X. D. Hang, Unconditional stability of parallel difference schemes with second order accuracy for parabolic equation,, Applied Mathematics and Computation, 184 (2007), 1015. doi: 10.1016/j.amc.2006.07.003. Google Scholar [13] A. Shestakov, J. Milovich and D. Kershaw, Parallelization of an unstructured-grid, laser fusion design code,, SIAM News, 32 (1999), 6. Google Scholar [14] H. S. Shi and H. L. Liao, Unconditional stability of corrected explicit-implicit domain decomposition algorithms for parallel approximation of heat equations,, SIAM J. Numer. Anal., 44 (2006), 1584. doi: 10.1137/040609215. Google Scholar [15] A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory,, Springer-Verlag, (2005). Google Scholar [16] M. L. Wilkins, Computer Simulation of Dynamic Phenomena,, Springer-Verlag, (1999). doi: 10.1007/978-3-662-03885-7. Google Scholar [17] L. Yin, J. M. Wu and Y. Z. Yao, A cell functional minimization scheme for parabolic problem,, Journal of Computational Physics, 229 (2010), 8935. doi: 10.1016/j.jcp.2010.08.018. Google Scholar [18] G. W. Yuan, X. D. Hang and Z. Q. Sheng, Parallel difference schemes with interface extrapolation terms for quasi-linear parabolic systems,, Science in China Series A: Mathematics, 50 (2007), 253. doi: 10.1007/s11425-007-0014-7. Google Scholar [19] G. W. Yuan and X. D. Hang, Conservative parallel schemes for diffusion equations,, Chinese Journal of Computational Physics, 27 (2010), 475. Google Scholar [20] G. W. Yuan, L. G. Shen and Y. L. Zhou, Parallel Difference Schemes for Parabolic Problem,, in Proceeding of 2002 5th International Conference on Algorithms and Architectures for Parallel Processing, (2002), 238. Google Scholar [21] G. W. Yuan, Y. Z. Yao and L. Yin, Conservative domain decomposition procedure for nonlinear diffusion problems on arbitrary quadrilateral grids,, SIAM J. Sci. Comput., 33 (2011), 1352. doi: 10.1137/10081335X. Google Scholar [22] G. W. Yuan and F. L. Zuo, Parallel differences schemes for heat conduction equations,, International Journal of Computer Mathematics, 80 (2003), 995. doi: 10.1080/0020716031000087159. Google Scholar [23] J. Y. Yue and G. W. Yuan, Picard-Newton iterative method with time step control for multimaterial non-equilibrium radiation diffusion problem,, Commun. Comput. Phys., 10 (2011), 844. doi: 10.4208/cicp.310110.161010a. Google Scholar [24] S. H. Zhu, Conservative domain decomposition procedure with unconditional stability and second-order accuracy,, Applied Mathematics and Computation, 216 (2010), 3275. doi: 10.1016/j.amc.2010.04.054. Google Scholar [25] Y. Zhuang and X. Sun, Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations,, SIAM J. Sci. Comput., 24 (2002), 335. doi: 10.1137/S1064827501384755. Google Scholar

show all references

##### References:
 [1] C. N. Dawson, Q. Du and T. F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation,, Math. Comp., 57 (1991), 63. doi: 10.1090/S0025-5718-1991-1079011-4. Google Scholar [2] M. Dryja, Substructuring methods for parabolic problems,, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations(Moscow, (1991), 264. Google Scholar [3] S. Gunter and K. Lackner, A mixed implicit-explicit finite difference scheme for heat transport in magnetized plasmas,, Journal of Computational Physics, 228 (2009), 282. Google Scholar [4] E. Jamelot and P. C. Jr, Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation,, Journal of Computational Physics, 241 (2013), 445. doi: 10.1016/j.jcp.2013.01.026. Google Scholar [5] Yu. M. Laevsky and O. V. Rudenko, Splitting methods for parabolic problems in nonrectangular domains,, Appl. Math. Lett., 8 (1995), 9. doi: 10.1016/0893-9659(95)00077-4. Google Scholar [6] H. L. Liao, H. S. Shi and Z. Z. Sun, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations,, Science in China Series A: Mathematics, 52 (2009), 2362. doi: 10.1007/s11425-009-0040-8. Google Scholar [7] P. H. Maire, R. Abgrall, J. Breil and J. Ovadia, A centered Lagrangian scheme for multidimensional compressible flow problems,, SIAM Journal on Scientific Computing, 29 (2007), 1781. doi: 10.1137/050633019. Google Scholar [8] J. E. Morel, R. M. Roberts and M. J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral $r-z$ meshes,, Journal of Computational Physics, 144 (1998), 17. doi: 10.1006/jcph.1998.5981. Google Scholar [9] S. Ovtchinnikov and X. C. Cai, One-level Newton-Krylov-Schwarz algorithm for unsteady non-linear radiation diffusion problem,, Numerical Linear Algebra with Applications, 11 (2004), 867. doi: 10.1002/nla.386. Google Scholar [10] W. J. Rider and D. A. Knoll, Time step size selection for radiation diffusion calculations,, Journal of Computational Physics, 152 (1999), 790. doi: 10.1006/jcph.1999.6266. Google Scholar [11] M. Shashkov, Conservative Finite Difference Methods,, CRC Press, (1996). Google Scholar [12] Z. Q. Sheng, G. W. Yuan and X. D. Hang, Unconditional stability of parallel difference schemes with second order accuracy for parabolic equation,, Applied Mathematics and Computation, 184 (2007), 1015. doi: 10.1016/j.amc.2006.07.003. Google Scholar [13] A. Shestakov, J. Milovich and D. Kershaw, Parallelization of an unstructured-grid, laser fusion design code,, SIAM News, 32 (1999), 6. Google Scholar [14] H. S. Shi and H. L. Liao, Unconditional stability of corrected explicit-implicit domain decomposition algorithms for parallel approximation of heat equations,, SIAM J. Numer. Anal., 44 (2006), 1584. doi: 10.1137/040609215. Google Scholar [15] A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory,, Springer-Verlag, (2005). Google Scholar [16] M. L. Wilkins, Computer Simulation of Dynamic Phenomena,, Springer-Verlag, (1999). doi: 10.1007/978-3-662-03885-7. Google Scholar [17] L. Yin, J. M. Wu and Y. Z. Yao, A cell functional minimization scheme for parabolic problem,, Journal of Computational Physics, 229 (2010), 8935. doi: 10.1016/j.jcp.2010.08.018. Google Scholar [18] G. W. Yuan, X. D. Hang and Z. Q. Sheng, Parallel difference schemes with interface extrapolation terms for quasi-linear parabolic systems,, Science in China Series A: Mathematics, 50 (2007), 253. doi: 10.1007/s11425-007-0014-7. Google Scholar [19] G. W. Yuan and X. D. Hang, Conservative parallel schemes for diffusion equations,, Chinese Journal of Computational Physics, 27 (2010), 475. Google Scholar [20] G. W. Yuan, L. G. Shen and Y. L. Zhou, Parallel Difference Schemes for Parabolic Problem,, in Proceeding of 2002 5th International Conference on Algorithms and Architectures for Parallel Processing, (2002), 238. Google Scholar [21] G. W. Yuan, Y. Z. Yao and L. Yin, Conservative domain decomposition procedure for nonlinear diffusion problems on arbitrary quadrilateral grids,, SIAM J. Sci. Comput., 33 (2011), 1352. doi: 10.1137/10081335X. Google Scholar [22] G. W. Yuan and F. L. Zuo, Parallel differences schemes for heat conduction equations,, International Journal of Computer Mathematics, 80 (2003), 995. doi: 10.1080/0020716031000087159. Google Scholar [23] J. Y. Yue and G. W. Yuan, Picard-Newton iterative method with time step control for multimaterial non-equilibrium radiation diffusion problem,, Commun. Comput. Phys., 10 (2011), 844. doi: 10.4208/cicp.310110.161010a. Google Scholar [24] S. H. Zhu, Conservative domain decomposition procedure with unconditional stability and second-order accuracy,, Applied Mathematics and Computation, 216 (2010), 3275. doi: 10.1016/j.amc.2010.04.054. Google Scholar [25] Y. Zhuang and X. Sun, Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations,, SIAM J. Sci. Comput., 24 (2002), 335. doi: 10.1137/S1064827501384755. Google Scholar
 [1] Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019053 [2] Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143 [3] Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65 [4] Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297 [5] Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523 [6] Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45 [7] Ming Huang, Cong Cheng, Yang Li, Zun Quan Xia. The space decomposition method for the sum of nonlinear convex maximum eigenvalues and its applications. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019034 [8] Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153 [9] Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173 [10] Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 [11] Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 [12] Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 [13] Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 [14] Zhong-Zhi Bai. On convergence of the inner-outer iteration method for computing PageRank. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 855-862. doi: 10.3934/naco.2012.2.855 [15] Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019033 [16] Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial & Management Optimization, 2015, 11 (1) : 65-81. doi: 10.3934/jimo.2015.11.65 [17] Yang Li, Liwei Zhang. A nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 651-669. doi: 10.3934/jimo.2009.5.651 [18] Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023 [19] Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 [20] Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

2018 Impact Factor: 1.008