# American Institute of Mathematical Sciences

July  2016, 21(5): 1567-1586. doi: 10.3934/dcdsb.2016011

## Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension

 1 Institute of Applied Mathematics, Putian University, Putian 351100, China

Received  September 2013 Revised  March 2014 Published  April 2016

In this paper we consider the following equation $$u_t=(u^m)_{xx}+(u^n)_x, \ \ (x, t)\in \mathbb{R}\times(0, \infty)$$ with a Dirac measure as initial data, i.e., $u(x, 0)=\delta(x)$. The solution of the Cauchy problem is well-known as source-type solution. In the recent work [11] the author studied the existence and uniqueness of such kind of singular solutions and proved that there exists a number $n_0=m+2$ such that there is a unique source-type solution to the equation when $0 \leq n < n_0$. Here our attention is focused on the nonexistence and asymptotic behavior near the origin for a short time. We prove that $n_0$ is also a critical number such that there exits no source-type solution when $n \geq n_0$ and describe the short time asymptotic behavior of the source-type solution to the equation when $0 \leq n < n_0$. Our result shows that in the case of existence and for a short time, the source-type solution of such equation behaves like the fundamental solution of the standard porous medium equation when $0 \leq n < m+1$, the unique self-similar source-type solution exists when $n = m+1$, and the solution does like the nonnegative fundamental entropy solution in the conservation law when $m+1 < n < n_0$, while in the case of nonexistence the singularity gradually disappears when $n \geq n_0$ that the mass cannot concentrate for a short time and no such a singular solutions exists. The results of previous work [11] and this paper give a perfect answer to such topical researches.
Citation: Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011
##### References:
 [1] G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium,, Prikladnaja Mathematika Mechanika, 16 (1952), 67. Google Scholar [2] S. Kamm, Source-type solution for equation of nonstationary filtration,, J. Math. Anal. Appl., 64 (1978), 263. doi: 10.1016/0022-247X(78)90036-7. Google Scholar [3] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measure as initial conditions,, J. Math. Pure. Appl., 62 (1983), 73. Google Scholar [4] S. Kamin and L. A. Peletier, Source-type solution of generate diffusive equation with absorption,, Israel. J. Math., 50 (1985), 219. doi: 10.1007/BF02761403. Google Scholar [5] J. Zhao, Source-type solutions of degenrate quasilinear parabolic equations,, J. of Dff. Eq., 92 (1991), 179. doi: 10.1016/0022-0396(91)90046-C. Google Scholar [6] T.-P. Liu and M. Pierre, Source-solution and asymptotic behavior in conservation laws,, J. of Diff. Eq., 51 (1984), 419. doi: 10.1016/0022-0396(84)90096-2. Google Scholar [7] M. Escobedo, J. L. Vazquez and E. Zuazua, Asymptotic behavior and source-type solutions for a diffusion-convection equation,, Arch. Rational Mech. Anal., 124 (1993), 43. doi: 10.1007/BF00392203. Google Scholar [8] G. Lu, Source-Type Solutions of Diffusion Equations with Nonlinear Convection,, China J. of Contemporary Math., 28 (2000), 185. Google Scholar [9] G. Lu, Explicit and similarity solutions for certain nonlinear parabolic diffusion-convection equations,, J. Sys. Sci and Math. Scis., 22 (2002), 210. Google Scholar [10] G. Lu and H. Yin, Source-type solutions of heat equation with convection in several variables spaces,, Science in China, 54 (2011), 1145. doi: 10.1007/s11425-011-4219-4. Google Scholar [11] G. Lu, Source-type solutions of nonlinear fokker-planck equation of one-dimension,, Science China Mathemathics, 56 (2013), 1845. doi: 10.1007/s11425-013-4612-2. Google Scholar [12] J. L. Vazquez, Perspectives in nonlinear diffusion: Between analysis, physics and geometry,, International Congress of Mathematicians, 1 (2007), 609. doi: 10.4171/022-1/23. Google Scholar [13] Y. Chen, Hölder estimates for solutions of uniformly degenerate parabolic equations,, Chin Ann. of Math., 5B (1984), 661. Google Scholar [14] G. Lu, A remark on $C^k$-regularity of free boundary for porous medium equation with gravity term in one-dimension,, Appl. Math. A Journal of Chinese University, 7 (1992), 579. Google Scholar [15] O. A. Ladyzhenskaja, N. A. Solonnikov and N. N. Uralezeva, Linear and Quasilinear Equations of Parabolic Type,, Trans. Math. Mono., (1968). Google Scholar [16] S. N. Kruzkov, First order quasilinear equations in several independent variables,, Math. USSR. Sb., 81 (1970), 228. Google Scholar [17] V. S. Varadarajan, Measure on topological spaces,, Amer. Math. Soci. Trans., 2 (1965). Google Scholar [18] R. J. LeVeque, Finite Volue Methods for Hyperbolic Problems,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511791253. Google Scholar [19] P. J. Vila, An analysis of a class of second-order accurate godunov-type schemes,, SIAM Journal on Numerical Analysis, 26 (1989), 830. doi: 10.1137/0726046. Google Scholar [20] T. Ding and C. Li, Ordinary differential equations,, China Hihgher Education Press, (1991). Google Scholar

show all references

##### References:
 [1] G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium,, Prikladnaja Mathematika Mechanika, 16 (1952), 67. Google Scholar [2] S. Kamm, Source-type solution for equation of nonstationary filtration,, J. Math. Anal. Appl., 64 (1978), 263. doi: 10.1016/0022-247X(78)90036-7. Google Scholar [3] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measure as initial conditions,, J. Math. Pure. Appl., 62 (1983), 73. Google Scholar [4] S. Kamin and L. A. Peletier, Source-type solution of generate diffusive equation with absorption,, Israel. J. Math., 50 (1985), 219. doi: 10.1007/BF02761403. Google Scholar [5] J. Zhao, Source-type solutions of degenrate quasilinear parabolic equations,, J. of Dff. Eq., 92 (1991), 179. doi: 10.1016/0022-0396(91)90046-C. Google Scholar [6] T.-P. Liu and M. Pierre, Source-solution and asymptotic behavior in conservation laws,, J. of Diff. Eq., 51 (1984), 419. doi: 10.1016/0022-0396(84)90096-2. Google Scholar [7] M. Escobedo, J. L. Vazquez and E. Zuazua, Asymptotic behavior and source-type solutions for a diffusion-convection equation,, Arch. Rational Mech. Anal., 124 (1993), 43. doi: 10.1007/BF00392203. Google Scholar [8] G. Lu, Source-Type Solutions of Diffusion Equations with Nonlinear Convection,, China J. of Contemporary Math., 28 (2000), 185. Google Scholar [9] G. Lu, Explicit and similarity solutions for certain nonlinear parabolic diffusion-convection equations,, J. Sys. Sci and Math. Scis., 22 (2002), 210. Google Scholar [10] G. Lu and H. Yin, Source-type solutions of heat equation with convection in several variables spaces,, Science in China, 54 (2011), 1145. doi: 10.1007/s11425-011-4219-4. Google Scholar [11] G. Lu, Source-type solutions of nonlinear fokker-planck equation of one-dimension,, Science China Mathemathics, 56 (2013), 1845. doi: 10.1007/s11425-013-4612-2. Google Scholar [12] J. L. Vazquez, Perspectives in nonlinear diffusion: Between analysis, physics and geometry,, International Congress of Mathematicians, 1 (2007), 609. doi: 10.4171/022-1/23. Google Scholar [13] Y. Chen, Hölder estimates for solutions of uniformly degenerate parabolic equations,, Chin Ann. of Math., 5B (1984), 661. Google Scholar [14] G. Lu, A remark on $C^k$-regularity of free boundary for porous medium equation with gravity term in one-dimension,, Appl. Math. A Journal of Chinese University, 7 (1992), 579. Google Scholar [15] O. A. Ladyzhenskaja, N. A. Solonnikov and N. N. Uralezeva, Linear and Quasilinear Equations of Parabolic Type,, Trans. Math. Mono., (1968). Google Scholar [16] S. N. Kruzkov, First order quasilinear equations in several independent variables,, Math. USSR. Sb., 81 (1970), 228. Google Scholar [17] V. S. Varadarajan, Measure on topological spaces,, Amer. Math. Soci. Trans., 2 (1965). Google Scholar [18] R. J. LeVeque, Finite Volue Methods for Hyperbolic Problems,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511791253. Google Scholar [19] P. J. Vila, An analysis of a class of second-order accurate godunov-type schemes,, SIAM Journal on Numerical Analysis, 26 (1989), 830. doi: 10.1137/0726046. Google Scholar [20] T. Ding and C. Li, Ordinary differential equations,, China Hihgher Education Press, (1991). Google Scholar
 [1] Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783 [2] Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 [3] Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 [4] Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665 [5] Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 [6] Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 [7] Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 [8] Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 [9] Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927 [10] Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 [11] P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807 [12] Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009 [13] Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401 [14] Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 [15] Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 [16] Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178 [17] Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 [18] Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663 [19] Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 [20] Wenxia Chen, Ping Yang, Weiwei Gao, Lixin Tian. The approximate solution for Benjamin-Bona-Mahony equation under slowly varying medium. Communications on Pure & Applied Analysis, 2018, 17 (3) : 823-848. doi: 10.3934/cpaa.2018042

2018 Impact Factor: 1.008