May  2016, 21(3): 849-861. doi: 10.3934/dcdsb.2016.21.849

Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory

1. 

Department of Mathematics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada

2. 

School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai 200433, China

Received  September 2014 Revised  November 2015 Published  January 2016

Uniqueness of nonzero positive solutions of a Laplacian elliptic equation arising in combustion theory is of great interest in combustion theory since it can be applied to determine where the extinction phenomenon occurs. We study the uniqueness whenever the orders of the reaction rates are in $(-\infty,1]$. Previous results on uniqueness treated the case when the orders belong to $[0,1)$. When the orders are negative or 1, it is physically meaningful and the bimolecular reaction rate corresponds to the order 1, but there is little study on uniqueness. Our results on the uniqueness are completely new when the orders are negative or 1, and also improve some known results when the orders belong to $(0,1)$. Our results provide exact intervals of the Frank-Kamenetskii parameters on which the extinction phenomenon never occurs. The novelty of our methodology is to combine and utilize the results from Laplacian elliptic inequalities and equations to derive new results on uniqueness of nonzero positive solutions for general Laplacian elliptic equations.
Citation: Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849
References:
[1]

I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball,, Proc. Amer. Math. Soc., 117 (1993), 775. doi: 10.1090/S0002-9939-1993-1116249-5. Google Scholar

[2]

H. Amann, On the existence of positive solutions of nonlinear elliptic boundary problems,, Indiana Univ. Math. J., 71 (1972), 125. doi: 10.1512/iumj.1972.21.21012. Google Scholar

[3]

T. Boddington, P. Gray and C. Robinson, Thermal explosion and the disappearance of criticality at small activation energies: Exact results for the slab,, Proc. Roy. Soc. London, 368 (1979), 441. Google Scholar

[4]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations,, Nonlinear Anal. 10 (1986), 10 (1986), 55. doi: 10.1016/0362-546X(86)90011-8. Google Scholar

[5]

K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,, Nonlinear Anal., 5 (1981), 475. doi: 10.1016/0362-546X(81)90096-1. Google Scholar

[6]

N. P. Cac, On the uniqueness of positive solutions of a nonlinear elliptic boundary value problems,, J. London Math. Soc., 25 (1982), 347. doi: 10.1112/jlms/s2-25.2.347. Google Scholar

[7]

Y. H. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory,, SIAM J. Math. Anal., 32 (2000), 707. doi: 10.1137/S0036141098343586. Google Scholar

[8]

Y. H. Du and Y. Lou, Proof of a conjecture for the perturbed Gelfand equation from combustion theory,, J. Differential Equations, 173 (2001), 213. doi: 10.1006/jdeq.2000.3932. Google Scholar

[9]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1977), 209. doi: 10.1007/BF01221125. Google Scholar

[10]

P. Hess, On the uniqueness of positive solutions of nonlinear elliptic boundary value problems,, Math. Z., 154 (1977), 17. doi: 10.1007/BF01215108. Google Scholar

[11]

W. P. Ho, R. B. Barat and J. W. Bozzelli, Thermal reaction of CH2C12 in H2/02 mixtures: Implications for chlorine inhibition of CO conversion to CO2,, Combust. Flame, 88 (1992), 265. Google Scholar

[12]

K. Q. Lan, Nonzero positive solutions of systems of elliptic boundary value problems,, Proc. Amer. Math. Soc., 139 (2011), 4343. doi: 10.1090/S0002-9939-2011-10840-2. Google Scholar

[13]

K. Q. Lan, A variational inequality theory for demicontinuous S-contractive maps with applications to semilinear elliptic inequalities,, J. Differential Equations, 246 (2009), 909. doi: 10.1016/j.jde.2008.10.007. Google Scholar

[14]

K. Q. Lan, Positive weak solutions of semilinear second order elliptic inequalities via variational inequalities,, J. Math. Anal. Appl., 380 (2011), 520. doi: 10.1016/j.jmaa.2011.03.030. Google Scholar

[15]

K. Q. Lan, A fixed point theory for weakly inward S-contractive maps,, Nonlinear Anal., 45 (2001), 189. doi: 10.1016/S0362-546X(99)00337-5. Google Scholar

[16]

K. Q. Lan and W. Lin, A variational inequality index for condensing maps in Hilbert spaces and applications to semilinear elliptic inequalities,, Nonlinear Anal., 74 (2011), 5415. doi: 10.1016/j.na.2011.05.025. Google Scholar

[17]

K. Q. Lan and J. R. L. Webb, Variational inequalities and fixed point theorems for PM-maps,, J. Math. Anal. Appl., 224 (1998), 102. doi: 10.1006/jmaa.1998.5988. Google Scholar

[18]

K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,, J. Differential Equations, 148 (1998), 407. doi: 10.1006/jdeq.1998.3475. Google Scholar

[19]

K. Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of p-Laplace equations,, J. Math. Anal. Appl., 394 (2012), 581. doi: 10.1016/j.jmaa.2012.04.061. Google Scholar

[20]

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,, SIAM Rev., 24 (1982), 441. doi: 10.1137/1024101. Google Scholar

[21]

G. P. Miller, The structure of a stoichiometric CCI4-CH4-air flat flame,, Combust. Flame, 101 (1995), 101. Google Scholar

[22]

W. M. Ni, Uniqueness of solutions of nonlinear Dirichelet problems,, J. Differential Equations, 50 (1983), 289. doi: 10.1016/0022-0396(83)90079-7. Google Scholar

[23]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67. doi: 10.1002/cpa.3160380105. Google Scholar

[24]

S. S. Okoya, Boundness for a system of reaction-diffusion equations. I,, Mathematika, 41 (1994), 293. doi: 10.1112/S0025579300007397. Google Scholar

[25]

J. A. Smoller and A. G. Wasserman, Existence, uniqueness, and non degeneracy of positive solutions of semilinear elliptic equations,, Comm. Math. Phys., 95 (1984), 129. doi: 10.1007/BF01468138. Google Scholar

[26]

K. Taira, Semilinear elliptic boundary-value problems in combustion theory,, Proc. Roy. Soc. Edinburgh, 132 (2002), 1453. Google Scholar

[27]

D. G. Vlachos, The interplay of transport, kinetics, and thermal interactions in the stability of premixed hydrogen/air flames,, Combust. Flame, 103 (1995), 59. doi: 10.1016/0010-2180(95)00072-E. Google Scholar

[28]

G. C. Wake, T. Boddington and P. Gray, Thermal explosion and the disappearance of criticality in systems with distribution temperatures, IV. Rigonus bounds and their practical relevance,, Proc. Roy. Soc. London, 425 (1989), 285. Google Scholar

[29]

S. H. Wang, On S-shaped bifurcation curves,, Nonlinear Anal., 22 (1994), 1475. doi: 10.1016/0362-546X(94)90183-X. Google Scholar

[30]

S. H. Wang, Rigorous analysis and estimates of S-shaped bifurcation curves in a combustion problem with general Arrhenius reaction-rate laws,, Proc. Roy. Soc. London, 454 (1998), 1031. doi: 10.1098/rspa.1998.0195. Google Scholar

[31]

F. A. Williams, Combustion theory, 2nd ed,, Redwood City, (1985), 585. Google Scholar

show all references

References:
[1]

I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball,, Proc. Amer. Math. Soc., 117 (1993), 775. doi: 10.1090/S0002-9939-1993-1116249-5. Google Scholar

[2]

H. Amann, On the existence of positive solutions of nonlinear elliptic boundary problems,, Indiana Univ. Math. J., 71 (1972), 125. doi: 10.1512/iumj.1972.21.21012. Google Scholar

[3]

T. Boddington, P. Gray and C. Robinson, Thermal explosion and the disappearance of criticality at small activation energies: Exact results for the slab,, Proc. Roy. Soc. London, 368 (1979), 441. Google Scholar

[4]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations,, Nonlinear Anal. 10 (1986), 10 (1986), 55. doi: 10.1016/0362-546X(86)90011-8. Google Scholar

[5]

K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,, Nonlinear Anal., 5 (1981), 475. doi: 10.1016/0362-546X(81)90096-1. Google Scholar

[6]

N. P. Cac, On the uniqueness of positive solutions of a nonlinear elliptic boundary value problems,, J. London Math. Soc., 25 (1982), 347. doi: 10.1112/jlms/s2-25.2.347. Google Scholar

[7]

Y. H. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory,, SIAM J. Math. Anal., 32 (2000), 707. doi: 10.1137/S0036141098343586. Google Scholar

[8]

Y. H. Du and Y. Lou, Proof of a conjecture for the perturbed Gelfand equation from combustion theory,, J. Differential Equations, 173 (2001), 213. doi: 10.1006/jdeq.2000.3932. Google Scholar

[9]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1977), 209. doi: 10.1007/BF01221125. Google Scholar

[10]

P. Hess, On the uniqueness of positive solutions of nonlinear elliptic boundary value problems,, Math. Z., 154 (1977), 17. doi: 10.1007/BF01215108. Google Scholar

[11]

W. P. Ho, R. B. Barat and J. W. Bozzelli, Thermal reaction of CH2C12 in H2/02 mixtures: Implications for chlorine inhibition of CO conversion to CO2,, Combust. Flame, 88 (1992), 265. Google Scholar

[12]

K. Q. Lan, Nonzero positive solutions of systems of elliptic boundary value problems,, Proc. Amer. Math. Soc., 139 (2011), 4343. doi: 10.1090/S0002-9939-2011-10840-2. Google Scholar

[13]

K. Q. Lan, A variational inequality theory for demicontinuous S-contractive maps with applications to semilinear elliptic inequalities,, J. Differential Equations, 246 (2009), 909. doi: 10.1016/j.jde.2008.10.007. Google Scholar

[14]

K. Q. Lan, Positive weak solutions of semilinear second order elliptic inequalities via variational inequalities,, J. Math. Anal. Appl., 380 (2011), 520. doi: 10.1016/j.jmaa.2011.03.030. Google Scholar

[15]

K. Q. Lan, A fixed point theory for weakly inward S-contractive maps,, Nonlinear Anal., 45 (2001), 189. doi: 10.1016/S0362-546X(99)00337-5. Google Scholar

[16]

K. Q. Lan and W. Lin, A variational inequality index for condensing maps in Hilbert spaces and applications to semilinear elliptic inequalities,, Nonlinear Anal., 74 (2011), 5415. doi: 10.1016/j.na.2011.05.025. Google Scholar

[17]

K. Q. Lan and J. R. L. Webb, Variational inequalities and fixed point theorems for PM-maps,, J. Math. Anal. Appl., 224 (1998), 102. doi: 10.1006/jmaa.1998.5988. Google Scholar

[18]

K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,, J. Differential Equations, 148 (1998), 407. doi: 10.1006/jdeq.1998.3475. Google Scholar

[19]

K. Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of p-Laplace equations,, J. Math. Anal. Appl., 394 (2012), 581. doi: 10.1016/j.jmaa.2012.04.061. Google Scholar

[20]

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,, SIAM Rev., 24 (1982), 441. doi: 10.1137/1024101. Google Scholar

[21]

G. P. Miller, The structure of a stoichiometric CCI4-CH4-air flat flame,, Combust. Flame, 101 (1995), 101. Google Scholar

[22]

W. M. Ni, Uniqueness of solutions of nonlinear Dirichelet problems,, J. Differential Equations, 50 (1983), 289. doi: 10.1016/0022-0396(83)90079-7. Google Scholar

[23]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67. doi: 10.1002/cpa.3160380105. Google Scholar

[24]

S. S. Okoya, Boundness for a system of reaction-diffusion equations. I,, Mathematika, 41 (1994), 293. doi: 10.1112/S0025579300007397. Google Scholar

[25]

J. A. Smoller and A. G. Wasserman, Existence, uniqueness, and non degeneracy of positive solutions of semilinear elliptic equations,, Comm. Math. Phys., 95 (1984), 129. doi: 10.1007/BF01468138. Google Scholar

[26]

K. Taira, Semilinear elliptic boundary-value problems in combustion theory,, Proc. Roy. Soc. Edinburgh, 132 (2002), 1453. Google Scholar

[27]

D. G. Vlachos, The interplay of transport, kinetics, and thermal interactions in the stability of premixed hydrogen/air flames,, Combust. Flame, 103 (1995), 59. doi: 10.1016/0010-2180(95)00072-E. Google Scholar

[28]

G. C. Wake, T. Boddington and P. Gray, Thermal explosion and the disappearance of criticality in systems with distribution temperatures, IV. Rigonus bounds and their practical relevance,, Proc. Roy. Soc. London, 425 (1989), 285. Google Scholar

[29]

S. H. Wang, On S-shaped bifurcation curves,, Nonlinear Anal., 22 (1994), 1475. doi: 10.1016/0362-546X(94)90183-X. Google Scholar

[30]

S. H. Wang, Rigorous analysis and estimates of S-shaped bifurcation curves in a combustion problem with general Arrhenius reaction-rate laws,, Proc. Roy. Soc. London, 454 (1998), 1031. doi: 10.1098/rspa.1998.0195. Google Scholar

[31]

F. A. Williams, Combustion theory, 2nd ed,, Redwood City, (1985), 585. Google Scholar

[1]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[2]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[3]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[4]

Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002

[5]

Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405

[6]

Feng Du, Adriano Cavalcante Bezerra. Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting laplacian. Communications on Pure & Applied Analysis, 2017, 6 (2) : 475-491. doi: 10.3934/cpaa.2017024

[7]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[8]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[9]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[10]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031

[11]

Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052

[12]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[13]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[14]

Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400

[15]

Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122

[16]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[17]

Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974

[18]

Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001

[19]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[20]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]