May  2016, 21(3): 837-847. doi: 10.3934/dcdsb.2016.21.837

A revisit to the diffusive logistic model with free boundary condition

1. 

School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7

Received  February 2015 Revised  July 2015 Published  January 2016

This short paper revisits a free boundary problem which is used to describe the spreading of a new or invasive species. Our main goal is to understand how the underlying long-time dynamical behaviors response to the initial data. To this end, we parameterize the initial function as $u_0=\sigma\phi^*$, where $\sigma$ is regarded as a variable parameter and $\phi^*$ is a given function. Our main result suggests that when the diffusion rate is small, the species can persist in the long run (called spreading) for any $\sigma>0$; while if the diffusion rate is large, the species will go to extinction finally (called vanishing) for small $\sigma>0$. Maybe of more interest is that for some intermediate diffusion rates, there appears a sharp threshold value $\sigma^*\in(0, \infty)$ such that vanishing happens provided $0<\sigma\leq\sigma^*$ and spreading happens provided $\sigma>\sigma^*$. This result can be seen as an improvement of Theorem 1.2 in [8].
Citation: Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837
References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media., 7 (2012), 583. doi: 10.3934/nhm.2012.7.583. Google Scholar

[2]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments,, Proc. Roy. Soc. Edinburgh., 112 (1989), 293. doi: 10.1017/S030821050001876X. Google Scholar

[3]

R. S. Cantrell, C. Cosner and V. Hutson, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1. doi: 10.1216/rmjm/1181072101. Google Scholar

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. Google Scholar

[5]

S. B. Cui, Well-posedness of a multidimensional free boundary problem modelling the growth of nonnecrotic tumors,, J. Funct. Anal., 245 (2007), 1. doi: 10.1016/j.jfa.2006.12.020. Google Scholar

[6]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, Journal of Differential Equations, 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. Google Scholar

[7]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. Google Scholar

[8]

Y. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, J. Eur. Math. Soc., 17 (2015), 2673. doi: 10.4171/JEMS/568. Google Scholar

[9]

Y. Du, H. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems,, SIAM J. Math. Anal., 46 (2014), 375. doi: 10.1137/130908063. Google Scholar

[10]

Y. Du, H. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions,, J. Math. Pures Appl., 103 (2015), 741. doi: 10.1137/130908063. Google Scholar

[11]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem,, Interfaces Free Bound, 3 (2001), 337. Google Scholar

[12]

H. Ghidouche, P. Souplet and D. Tarzia, Decay of global solutions, stability and blow-up for a reaction-diffusion problem with free boundary,, Proc. Am. Math. Soc., 129 (2001), 781. doi: 10.1090/S0002-9939-00-05705-1. Google Scholar

[13]

K. I. Kim, Z. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary,, Nonlinear Analysis: Real World Applications., 14 (2013), 1992. doi: 10.1016/j.nonrwa.2013.02.003. Google Scholar

[14]

C. X. Lei, K. Kim and Z. G. Lin, The spreading frontiers of avian-human influenza described by the free boundary,, Sci. China Math., 57 (2014), 971. doi: 10.1007/s11425-013-4652-7. Google Scholar

[15]

C. X. Lei, Z. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat,, J. Differential Equations., 257 (2014), 145. doi: 10.1016/j.jde.2014.03.015. Google Scholar

[16]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004. Google Scholar

[17]

Z. G. Lin, Y. N. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay,, Discrete. Contin. Dyn. Syst. Ser. B, 18 (2013), 2355. doi: 10.3934/dcdsb.2013.18.2355. Google Scholar

[18]

L. I. Rubinstein, The Stefan Problem,, American Mathematical Society, (1971). Google Scholar

[19]

F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth,, Ecology, 44 (1963), 651. doi: 10.2307/1933011. Google Scholar

[20]

P. Zhou, J. Bao and Z. G. Lin, Global existence and blowup of a localized problem with free boundary,, Nonlinear Anal., 74 (2011), 2523. doi: 10.1016/j.na.2010.11.047. Google Scholar

[21]

P. Zhou and Z. G. Lin, Global existence and blowup of a nonlocal problem in space with free boundary,, J. Funct. Anal., 262 (2012), 3409. doi: 10.1016/j.jfa.2012.01.018. Google Scholar

[22]

P. Zhou and Z. G. Lin, Global fast and slow solutions of a localized problem with free boundary,, Sci. China Math., 55 (2012), 1937. doi: 10.1007/s11425-012-4443-6. Google Scholar

[23]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment,, J. Differential Equations., 256 (2014), 1927. doi: 10.1016/j.jde.2013.12.008. Google Scholar

show all references

References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media., 7 (2012), 583. doi: 10.3934/nhm.2012.7.583. Google Scholar

[2]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments,, Proc. Roy. Soc. Edinburgh., 112 (1989), 293. doi: 10.1017/S030821050001876X. Google Scholar

[3]

R. S. Cantrell, C. Cosner and V. Hutson, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1. doi: 10.1216/rmjm/1181072101. Google Scholar

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. Google Scholar

[5]

S. B. Cui, Well-posedness of a multidimensional free boundary problem modelling the growth of nonnecrotic tumors,, J. Funct. Anal., 245 (2007), 1. doi: 10.1016/j.jfa.2006.12.020. Google Scholar

[6]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, Journal of Differential Equations, 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. Google Scholar

[7]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. Google Scholar

[8]

Y. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, J. Eur. Math. Soc., 17 (2015), 2673. doi: 10.4171/JEMS/568. Google Scholar

[9]

Y. Du, H. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems,, SIAM J. Math. Anal., 46 (2014), 375. doi: 10.1137/130908063. Google Scholar

[10]

Y. Du, H. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions,, J. Math. Pures Appl., 103 (2015), 741. doi: 10.1137/130908063. Google Scholar

[11]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem,, Interfaces Free Bound, 3 (2001), 337. Google Scholar

[12]

H. Ghidouche, P. Souplet and D. Tarzia, Decay of global solutions, stability and blow-up for a reaction-diffusion problem with free boundary,, Proc. Am. Math. Soc., 129 (2001), 781. doi: 10.1090/S0002-9939-00-05705-1. Google Scholar

[13]

K. I. Kim, Z. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary,, Nonlinear Analysis: Real World Applications., 14 (2013), 1992. doi: 10.1016/j.nonrwa.2013.02.003. Google Scholar

[14]

C. X. Lei, K. Kim and Z. G. Lin, The spreading frontiers of avian-human influenza described by the free boundary,, Sci. China Math., 57 (2014), 971. doi: 10.1007/s11425-013-4652-7. Google Scholar

[15]

C. X. Lei, Z. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat,, J. Differential Equations., 257 (2014), 145. doi: 10.1016/j.jde.2014.03.015. Google Scholar

[16]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004. Google Scholar

[17]

Z. G. Lin, Y. N. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay,, Discrete. Contin. Dyn. Syst. Ser. B, 18 (2013), 2355. doi: 10.3934/dcdsb.2013.18.2355. Google Scholar

[18]

L. I. Rubinstein, The Stefan Problem,, American Mathematical Society, (1971). Google Scholar

[19]

F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth,, Ecology, 44 (1963), 651. doi: 10.2307/1933011. Google Scholar

[20]

P. Zhou, J. Bao and Z. G. Lin, Global existence and blowup of a localized problem with free boundary,, Nonlinear Anal., 74 (2011), 2523. doi: 10.1016/j.na.2010.11.047. Google Scholar

[21]

P. Zhou and Z. G. Lin, Global existence and blowup of a nonlocal problem in space with free boundary,, J. Funct. Anal., 262 (2012), 3409. doi: 10.1016/j.jfa.2012.01.018. Google Scholar

[22]

P. Zhou and Z. G. Lin, Global fast and slow solutions of a localized problem with free boundary,, Sci. China Math., 55 (2012), 1937. doi: 10.1007/s11425-012-4443-6. Google Scholar

[23]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment,, J. Differential Equations., 256 (2014), 1927. doi: 10.1016/j.jde.2013.12.008. Google Scholar

[1]

Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007

[2]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[3]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[4]

Alan E. Lindsay, Michael J. Ward. An asymptotic analysis of the persistence threshold for the diffusive logistic model in spatial environments with localized patches. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1139-1179. doi: 10.3934/dcdsb.2010.14.1139

[5]

Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13

[6]

Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

[7]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[8]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[9]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[10]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[11]

Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253

[12]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[13]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[14]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[15]

C. Bonanno, G. Menconi. Computational information for the logistic map at the chaos threshold. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 415-431. doi: 10.3934/dcdsb.2002.2.415

[16]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[17]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[18]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[19]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240

[20]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]