January  2016, 21(1): 81-102. doi: 10.3934/dcdsb.2016.21.81

Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity

1. 

Department of Mathematics, Tokyo University of Science, Tokyo 162-8601

2. 

Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550

Received  June 2015 Revised  July 2015 Published  November 2015

This paper is concerned with the parabolic-elliptic Keller-Segel system with signal-dependent sensitivity $\chi(v)$, \begin{align*} \begin{cases} u_t=\Delta u - \nabla \cdot ( u \nabla \chi(v)) &\mathrm{in}\ \Omega\times(0,\infty), \\ 0=\Delta v -v+u &\mathrm{in}\ \Omega\times(0,\infty), \end{cases} \end{align*} under homogeneous Neumann boundary condition in a smoothly bounded domain $\Omega \subset \mathbb{R}^2$ with nonnegative initial data $u_0 \in C^{0}(\overline{\Omega})$, $\not\equiv 0$.
    In the special case $\chi(v)=\chi_0 \log v\, (\chi_0>0)$, global existence and boundedness of the solution to the system were proved under some smallness condition on $\chi_0$ by Biler (1999) and Fujie, Winkler and Yokota (2015). In the present work, global existence and boundedness in the system will be established for general sensitivity $\chi$ satisfying $\chi'>0$ and $\chi'(s) \to 0 $ as $s\to \infty$. In particular, this establishes global existence and boundedness in the case $\chi(v)=\chi_0\log v$ with large $\chi_0>0$. Moreover, although the methods in the previous results are effective for only few specific cases, the present method can be applied to more general cases requiring only the essential conditions. Actually, our condition is necessary, since there are many radial blow-up solutions in the case $\inf_{s>0} \chi^\prime (s) >0$.
Citation: Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81
References:
[1]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis,, Adv. Math. Sci. Appl., 9 (1999), 347. Google Scholar

[2]

H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565. doi: 10.2969/jmsj/02540565. Google Scholar

[3]

S. Y. A. Chang and P. Yang, Conformal deformation of metrics on $S^2$,, J. Differential Geom., 27 (1988), 259. Google Scholar

[4]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity,, J. Math. Anal. Appl., 424 (2015), 675. doi: 10.1016/j.jmaa.2014.11.045. Google Scholar

[5]

K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity,, Math. Methods Appl. Sci., 38 (2015), 1212. doi: 10.1002/mma.3149. Google Scholar

[6]

K. Fujie and T. Yokota, Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity,, Appl. Math. Lett., 38 (2014), 140. doi: 10.1016/j.aml.2014.07.021. Google Scholar

[7]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 663. Google Scholar

[8]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103. Google Scholar

[10]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[12]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis,, J. Theor. Biol., 30 (1971), 235. doi: 10.1016/0022-5193(71)90051-8. Google Scholar

[13]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[14]

T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042. Google Scholar

[15]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 145. Google Scholar

[16]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj, 40 (1997), 411. Google Scholar

[17]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theor. Biol., 42 (1973), 63. doi: 10.1016/0022-5193(73)90149-5. Google Scholar

[18]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21. Google Scholar

[19]

Y. Sugiyama, On $\varepsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems,, SIAM J. Math. Anal., 41 (2009), 1664. doi: 10.1137/080721078. Google Scholar

[20]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity,, Math. Nachr., 283 (2010), 1664. doi: 10.1002/mana.200810838. Google Scholar

[21]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity,, Math. Methods Appl. Sci., 34 (2011), 176. doi: 10.1002/mma.1346. Google Scholar

show all references

References:
[1]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis,, Adv. Math. Sci. Appl., 9 (1999), 347. Google Scholar

[2]

H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565. doi: 10.2969/jmsj/02540565. Google Scholar

[3]

S. Y. A. Chang and P. Yang, Conformal deformation of metrics on $S^2$,, J. Differential Geom., 27 (1988), 259. Google Scholar

[4]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity,, J. Math. Anal. Appl., 424 (2015), 675. doi: 10.1016/j.jmaa.2014.11.045. Google Scholar

[5]

K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity,, Math. Methods Appl. Sci., 38 (2015), 1212. doi: 10.1002/mma.3149. Google Scholar

[6]

K. Fujie and T. Yokota, Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity,, Appl. Math. Lett., 38 (2014), 140. doi: 10.1016/j.aml.2014.07.021. Google Scholar

[7]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 663. Google Scholar

[8]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103. Google Scholar

[10]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[12]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis,, J. Theor. Biol., 30 (1971), 235. doi: 10.1016/0022-5193(71)90051-8. Google Scholar

[13]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[14]

T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042. Google Scholar

[15]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 145. Google Scholar

[16]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj, 40 (1997), 411. Google Scholar

[17]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theor. Biol., 42 (1973), 63. doi: 10.1016/0022-5193(73)90149-5. Google Scholar

[18]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21. Google Scholar

[19]

Y. Sugiyama, On $\varepsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems,, SIAM J. Math. Anal., 41 (2009), 1664. doi: 10.1137/080721078. Google Scholar

[20]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity,, Math. Nachr., 283 (2010), 1664. doi: 10.1002/mana.200810838. Google Scholar

[21]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity,, Math. Methods Appl. Sci., 34 (2011), 176. doi: 10.1002/mma.1346. Google Scholar

[1]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[2]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[3]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[4]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[5]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[6]

Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure & Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383

[7]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[8]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[9]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[10]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[11]

Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705

[12]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[13]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[14]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[15]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[16]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[17]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[18]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[19]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[20]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]