March  2016, 21(2): 557-573. doi: 10.3934/dcdsb.2016.21.557

On the analytic integrability of the Liénard analytic differential systems

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

2. 

Departamento de Matemática, Instituto Superior Técnico , Universidade Técnica de Lisboa, Av. Rovisco Pais 1049-001, Lisboa

Received  July 2014 Revised  September 2015 Published  November 2015

We consider the Liénard analytic differential systems $\dot x = y$, $\dot y =-g(x) -f(x)y$, where $f,g: \mathbb{R}\to \mathbb{R}$ are analytic functions and the origin is an isolated singular point. Then for such systems we characterize the existence of local analytic first integrals in a neighborhood of the origin and the existence of global analytic first integrals.
Citation: Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557
References:
[1]

C. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems,, J. Math. Anal. Appl., 229 (1999), 319. doi: 10.1006/jmaa.1998.6175. Google Scholar

[2]

C. Christopher and N. G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems,, NoDEA, 3 (1996), 183. doi: 10.1007/BF01195913. Google Scholar

[3]

H. Dulac, Détermination et intégration d'une certaine classe d'équation différentielles ayant pour point singulier un centre,, Bull. Sciences Math. Sér. 2, 32 (1908), 230. Google Scholar

[4]

S. D. Furta, On non-integrability of general systems of differential equations,, Z. angew Math. Phys., 47 (1996), 112. doi: 10.1007/BF00917577. Google Scholar

[5]

W. Li, J. Llibre and X. Zhang, Local first integrals of differential systems and diffeomorphisms,, Z. angew. Math. Phys., 54 (2003), 235. doi: 10.1007/s000330300003. Google Scholar

[6]

A. M. Liapunov, Stability of Motion,, Mathematics in Science and Engineering, 30 (1966). doi: 10.1002/zamm.19680480223. Google Scholar

[7]

J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus} {of third order,, Canadian J. Math., 56 (2004), 310. doi: 10.4153/CJM-2004-015-2. Google Scholar

[8]

R. Moussu, Une démonstration d'un théorème de Lyapunov-Poincaré,, Astérisque, 98/99 (1982), 216. Google Scholar

[9]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Mathématiques, 37 (1881), 375. Google Scholar

[10]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, J. Math. Pure Appl., 1 (1885), 167. Google Scholar

[11]

H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré I and II,, Rendiconti del circolo matematico di Palermo, 5 (1891), 161. Google Scholar

[12]

D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields,, Bifurcation and Periodic Orbits of Vector Fields, 408 (1993), 429. doi: 10.1007/978-94-015-8238-4_10. Google Scholar

[13]

S. Songling, A method of constructing cycles without contact around a weak focus,, J. Differential Equations, 41 (1981), 301. doi: 10.1016/0022-0396(81)90039-5. Google Scholar

[14]

S. Songling, On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields,, J. Differential Equations, 52 (1984), 52. doi: 10.1016/0022-0396(84)90133-5. Google Scholar

[15]

C. Zuppa, Order of cyclicity of the singular point of Liénard's polynomial vector fields,, Bol. Soc. Brasil Mat., 12 (1982), 105. doi: 10.1007/BF02584662. Google Scholar

show all references

References:
[1]

C. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems,, J. Math. Anal. Appl., 229 (1999), 319. doi: 10.1006/jmaa.1998.6175. Google Scholar

[2]

C. Christopher and N. G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems,, NoDEA, 3 (1996), 183. doi: 10.1007/BF01195913. Google Scholar

[3]

H. Dulac, Détermination et intégration d'une certaine classe d'équation différentielles ayant pour point singulier un centre,, Bull. Sciences Math. Sér. 2, 32 (1908), 230. Google Scholar

[4]

S. D. Furta, On non-integrability of general systems of differential equations,, Z. angew Math. Phys., 47 (1996), 112. doi: 10.1007/BF00917577. Google Scholar

[5]

W. Li, J. Llibre and X. Zhang, Local first integrals of differential systems and diffeomorphisms,, Z. angew. Math. Phys., 54 (2003), 235. doi: 10.1007/s000330300003. Google Scholar

[6]

A. M. Liapunov, Stability of Motion,, Mathematics in Science and Engineering, 30 (1966). doi: 10.1002/zamm.19680480223. Google Scholar

[7]

J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus} {of third order,, Canadian J. Math., 56 (2004), 310. doi: 10.4153/CJM-2004-015-2. Google Scholar

[8]

R. Moussu, Une démonstration d'un théorème de Lyapunov-Poincaré,, Astérisque, 98/99 (1982), 216. Google Scholar

[9]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Mathématiques, 37 (1881), 375. Google Scholar

[10]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, J. Math. Pure Appl., 1 (1885), 167. Google Scholar

[11]

H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré I and II,, Rendiconti del circolo matematico di Palermo, 5 (1891), 161. Google Scholar

[12]

D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields,, Bifurcation and Periodic Orbits of Vector Fields, 408 (1993), 429. doi: 10.1007/978-94-015-8238-4_10. Google Scholar

[13]

S. Songling, A method of constructing cycles without contact around a weak focus,, J. Differential Equations, 41 (1981), 301. doi: 10.1016/0022-0396(81)90039-5. Google Scholar

[14]

S. Songling, On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields,, J. Differential Equations, 52 (1984), 52. doi: 10.1016/0022-0396(84)90133-5. Google Scholar

[15]

C. Zuppa, Order of cyclicity of the singular point of Liénard's polynomial vector fields,, Bol. Soc. Brasil Mat., 12 (1982), 105. doi: 10.1007/BF02584662. Google Scholar

[1]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[2]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[3]

Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797

[4]

Antonio Algaba, María Díaz, Cristóbal García, Jaume Giné. Analytic integrability around a nilpotent singularity: The non-generic case. Communications on Pure & Applied Analysis, 2020, 19 (1) : 407-423. doi: 10.3934/cpaa.2020021

[5]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[6]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[7]

Andrew N. W. Hone, Michael V. Irle. On the non-integrability of the Popowicz peakon system. Conference Publications, 2009, 2009 (Special) : 359-366. doi: 10.3934/proc.2009.2009.359

[8]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[9]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[10]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[11]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[12]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[13]

Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121

[14]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[15]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[16]

Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43

[17]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic & Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[18]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[19]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[20]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]