• Previous Article
    Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate
January  2016, 21(1): 151-172. doi: 10.3934/dcdsb.2016.21.151

Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$

1. 

Department of Mathematics, Faculty of Science, Hacettepe University, Beytepe 06800, Ankara, Turkey

Received  March 2015 Revised  August 2015 Published  November 2015

We consider Cauchy problem for the semilinear plate equation with nonlocal nonlinearity. Under mild conditions on the damping coefficient, we prove that the semigroup generated by this problem possesses a global attractor.
Citation: Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151
References:
[1]

Z. Arat, A. Khanmamedov and S. Simsek, Global attractors for the plate equation with nonlocal nonlinearity in unbounded domains,, Dynamics of PDE, 11 (2014), 361. doi: 10.4310/DPDE.2014.v11.n4.a4. Google Scholar

[2]

J. Ball, Global attractors for semilinear wave equations,, Discr. Cont. Dyn. Sys., 10 (2004), 31. doi: 10.3934/dcds.2004.10.31. Google Scholar

[3]

F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations,, Discrete Contin. Dyn. Syst., 22 (2008), 557. doi: 10.3934/dcds.2008.22.557. Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford University Press, (1998). Google Scholar

[5]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping,, Commun. Pure Appl. Anal., 11 (2012), 659. doi: 10.3934/cpaa.2012.11.659. Google Scholar

[6]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[7]

E. Dowell, Aeroelasticity of Plates and Shells,, Nordhoff, (1975). Google Scholar

[8]

E. Dowell, A Modern Course in Aeroelasticity,, Springer, (2015). doi: 10.1007/978-3-319-09453-3. Google Scholar

[9]

A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain,, Applied Mathematics Letters, 18 (2005), 827. doi: 10.1016/j.aml.2004.08.013. Google Scholar

[10]

A. Kh. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain,, J. Differential Equations, 225 (2006), 528. doi: 10.1016/j.jde.2005.12.001. Google Scholar

[11]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation,, J. Math. Anal. Appl., 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031. Google Scholar

[12]

A. Kh. Khanmamedov, Global attractors for 2-D wave equations with displacement dependent damping,, Math. Methods Appl. Sci., 33 (2010), 177. doi: 10.1002/mma.1161. Google Scholar

[13]

A. Kh. Khanmamedov, A global attractors for plate equation with displacement-dependent damping,, Nonlinear Analysis, 74 (2011), 1607. doi: 10.1016/j.na.2010.10.031. Google Scholar

[14]

S. Kolbasin, Attractors for Kirchoff's equation with a nonlinear damping coefficient,, Nonlinear Analysis, 71 (2009), 2361. doi: 10.1016/j.na.2009.01.187. Google Scholar

[15]

W. Krolikowski and O. Bang, {Solitons in nonlocal nonlnear media: Exact solutions,, Physical Review E, 63 (2000). Google Scholar

[16]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms,, Nonlinear Anal., 73 (2010), 3402. doi: 10.1016/j.na.2010.07.023. Google Scholar

[17]

T. F. Ma, V. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations,, J. Math. Anal. Appl., 396 (2012), 694. doi: 10.1016/j.jmaa.2012.07.004. Google Scholar

[18]

M. Potomkin, {On transmission problem for Berger plates on an elastic base,, Journal of Mathematical Physics, 7 (2011), 96. Google Scholar

[19]

M. Potomkin, A nonlinear transmission problem for acompound plate with thermoelastic part,, Math. Methods Appl. Sci., 35 (2012), 530. doi: 10.1002/mma.1589. Google Scholar

[20]

J. Simon, Compact sets in the space $L_p(0,T;B)$,, Annali Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[21]

A. Snyder and J. Mitchell, Accessible Solitons,, Science, 276 (1997), 1538. doi: 10.1126/science.276.5318.1538. Google Scholar

[22]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity,, J. Math. Anal. Appl., 338 (2008), 1243. doi: 10.1016/j.jmaa.2007.06.011. Google Scholar

[23]

G. Yue and C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces,, Nonlinear Analysis, 71 (2009), 4105. doi: 10.1016/j.na.2009.02.089. Google Scholar

show all references

References:
[1]

Z. Arat, A. Khanmamedov and S. Simsek, Global attractors for the plate equation with nonlocal nonlinearity in unbounded domains,, Dynamics of PDE, 11 (2014), 361. doi: 10.4310/DPDE.2014.v11.n4.a4. Google Scholar

[2]

J. Ball, Global attractors for semilinear wave equations,, Discr. Cont. Dyn. Sys., 10 (2004), 31. doi: 10.3934/dcds.2004.10.31. Google Scholar

[3]

F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations,, Discrete Contin. Dyn. Syst., 22 (2008), 557. doi: 10.3934/dcds.2008.22.557. Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford University Press, (1998). Google Scholar

[5]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping,, Commun. Pure Appl. Anal., 11 (2012), 659. doi: 10.3934/cpaa.2012.11.659. Google Scholar

[6]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[7]

E. Dowell, Aeroelasticity of Plates and Shells,, Nordhoff, (1975). Google Scholar

[8]

E. Dowell, A Modern Course in Aeroelasticity,, Springer, (2015). doi: 10.1007/978-3-319-09453-3. Google Scholar

[9]

A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain,, Applied Mathematics Letters, 18 (2005), 827. doi: 10.1016/j.aml.2004.08.013. Google Scholar

[10]

A. Kh. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain,, J. Differential Equations, 225 (2006), 528. doi: 10.1016/j.jde.2005.12.001. Google Scholar

[11]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation,, J. Math. Anal. Appl., 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031. Google Scholar

[12]

A. Kh. Khanmamedov, Global attractors for 2-D wave equations with displacement dependent damping,, Math. Methods Appl. Sci., 33 (2010), 177. doi: 10.1002/mma.1161. Google Scholar

[13]

A. Kh. Khanmamedov, A global attractors for plate equation with displacement-dependent damping,, Nonlinear Analysis, 74 (2011), 1607. doi: 10.1016/j.na.2010.10.031. Google Scholar

[14]

S. Kolbasin, Attractors for Kirchoff's equation with a nonlinear damping coefficient,, Nonlinear Analysis, 71 (2009), 2361. doi: 10.1016/j.na.2009.01.187. Google Scholar

[15]

W. Krolikowski and O. Bang, {Solitons in nonlocal nonlnear media: Exact solutions,, Physical Review E, 63 (2000). Google Scholar

[16]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms,, Nonlinear Anal., 73 (2010), 3402. doi: 10.1016/j.na.2010.07.023. Google Scholar

[17]

T. F. Ma, V. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations,, J. Math. Anal. Appl., 396 (2012), 694. doi: 10.1016/j.jmaa.2012.07.004. Google Scholar

[18]

M. Potomkin, {On transmission problem for Berger plates on an elastic base,, Journal of Mathematical Physics, 7 (2011), 96. Google Scholar

[19]

M. Potomkin, A nonlinear transmission problem for acompound plate with thermoelastic part,, Math. Methods Appl. Sci., 35 (2012), 530. doi: 10.1002/mma.1589. Google Scholar

[20]

J. Simon, Compact sets in the space $L_p(0,T;B)$,, Annali Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[21]

A. Snyder and J. Mitchell, Accessible Solitons,, Science, 276 (1997), 1538. doi: 10.1126/science.276.5318.1538. Google Scholar

[22]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity,, J. Math. Anal. Appl., 338 (2008), 1243. doi: 10.1016/j.jmaa.2007.06.011. Google Scholar

[23]

G. Yue and C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces,, Nonlinear Analysis, 71 (2009), 4105. doi: 10.1016/j.na.2009.02.089. Google Scholar

[1]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[2]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[3]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[4]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[5]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[6]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[7]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[9]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[10]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038

[11]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[12]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[13]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[14]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

[15]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[16]

Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198

[17]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[18]

Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301

[19]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[20]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019179

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]