• Previous Article
    Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate
  • DCDS-B Home
  • This Issue
  • Next Article
    Global behavior of delay differential equations model of HIV infection with apoptosis
January  2016, 21(1): 121-131. doi: 10.3934/dcdsb.2016.21.121

Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

Received  April 2015 Revised  June 2015 Published  November 2015

We classify the global phase portraits in the Poincaré disc of the differential systems $\dot{x}=-y+xf(x,y),$ $\dot{y}=x+yf(x,y)$, where $f(x,y)$ is a homogeneous polynomial of degree 3. These systems have a uniform isochronous center at the origin. This paper together with the results presented in [9] completes the classification of the global phase portraits in the Poincaré disc of all quartic polynomial differential systems with a uniform isochronous center at the origin.
Citation: Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121
References:
[1]

A. Algaba and M. Reyes, Characterizing isochronous points and computing isochronous sections,, J. Math. Anal. Appl., 355 (2009), 564. doi: 10.1016/j.jmaa.2009.02.007. Google Scholar

[2]

J. Chavarriga and M. Sabatini, A survey of isochronous centers,, Qualitative Theory of Dynamical Systems, 1 (1999), 1. doi: 10.1007/BF02969404. Google Scholar

[3]

A. G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations,, Lobachevskii Journal of Mathematics, 34 (2013), 212. doi: 10.1134/S1995080213030049. Google Scholar

[4]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbbR^2$,, Lecture Notes in Pure and Appl. Math., 152 (1994), 21. Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Universitext, (2006). Google Scholar

[6]

G. R. Fowles and G. L. Cassiday, Analytical Mechanics,, Thomson Brooks/Cole, (2005). Google Scholar

[7]

E. A. González, Generic properties of polynomial vector fields at infinity,, Trans. Amer. Math. Soc., 143 (1969), 201. doi: 10.1090/S0002-9947-1969-0252788-8. Google Scholar

[8]

M. Han and V. G. Romanovski, Isochronicity and normal forms of polynomial systems of ODEs,, J. Symb. Comput., 47 (2012), 1163. doi: 10.1016/j.jsc.2011.12.039. Google Scholar

[9]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers,, J. Comp. and Appl. Math., 287 (2015), 98. doi: 10.1016/j.cam.2015.02.046. Google Scholar

[10]

W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers,, Contributions to Diff. Eqs., 3 (1964), 21. Google Scholar

[11]

D. Neumann, Classification of continuous flows on 2-manifolds,, Proc. Amer. Math. Soc., 48 (1975), 73. doi: 10.1090/S0002-9939-1975-0356138-6. Google Scholar

show all references

References:
[1]

A. Algaba and M. Reyes, Characterizing isochronous points and computing isochronous sections,, J. Math. Anal. Appl., 355 (2009), 564. doi: 10.1016/j.jmaa.2009.02.007. Google Scholar

[2]

J. Chavarriga and M. Sabatini, A survey of isochronous centers,, Qualitative Theory of Dynamical Systems, 1 (1999), 1. doi: 10.1007/BF02969404. Google Scholar

[3]

A. G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations,, Lobachevskii Journal of Mathematics, 34 (2013), 212. doi: 10.1134/S1995080213030049. Google Scholar

[4]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbbR^2$,, Lecture Notes in Pure and Appl. Math., 152 (1994), 21. Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Universitext, (2006). Google Scholar

[6]

G. R. Fowles and G. L. Cassiday, Analytical Mechanics,, Thomson Brooks/Cole, (2005). Google Scholar

[7]

E. A. González, Generic properties of polynomial vector fields at infinity,, Trans. Amer. Math. Soc., 143 (1969), 201. doi: 10.1090/S0002-9947-1969-0252788-8. Google Scholar

[8]

M. Han and V. G. Romanovski, Isochronicity and normal forms of polynomial systems of ODEs,, J. Symb. Comput., 47 (2012), 1163. doi: 10.1016/j.jsc.2011.12.039. Google Scholar

[9]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers,, J. Comp. and Appl. Math., 287 (2015), 98. doi: 10.1016/j.cam.2015.02.046. Google Scholar

[10]

W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers,, Contributions to Diff. Eqs., 3 (1964), 21. Google Scholar

[11]

D. Neumann, Classification of continuous flows on 2-manifolds,, Proc. Amer. Math. Soc., 48 (1975), 73. doi: 10.1090/S0002-9939-1975-0356138-6. Google Scholar

[1]

Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075

[2]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[3]

David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229

[4]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[5]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[6]

Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497

[7]

Jaume Giné. Center conditions for generalized polynomial kukles systems. Communications on Pure & Applied Analysis, 2017, 16 (2) : 417-426. doi: 10.3934/cpaa.2017021

[8]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[9]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[10]

Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136

[11]

M. A. M. Alwash. Polynomial differential equations with small coefficients. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1129-1141. doi: 10.3934/dcds.2009.25.1129

[12]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[13]

Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073

[14]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[15]

Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791

[16]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[17]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[18]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[19]

Primitivo B. Acosta-Humánez, J. Tomás Lázaro, Juan J. Morales-Ruiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1767-1800. doi: 10.3934/dcds.2015.35.1767

[20]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]