March  2015, 20(2): 599-612. doi: 10.3934/dcdsb.2015.20.599

Exponential decay for linear damped porous thermoelastic systems with second sound

1. 

King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261

2. 

Laboratoire de thèorie des operateurs et EDP: fondements et applications, Faculté des Sciences et de technologie, Universit, El Oued 39000, Algeria

Received  March 2014 Revised  July 2014 Published  January 2015

In this paper, we investigate two problems in porous thermoelasticity where the heat conduction is given by Cattaneo's law and prove exponential decay results in the presence of both macro- and micro-dissipations.
Citation: Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599
References:
[1]

P. S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous thermoelasticity,, Mech. Res. Comm., 32 (2005), 652. doi: 10.1016/j.mechrescom.2005.02.015. Google Scholar

[2]

H. D. Fernàndez-Sare and R. Racke, On the stability of damped Timoshenko system Cattaneo versus Fourier law$^*$,, Arch. Rat. Mech. Anal., 194 (2009), 221. doi: 10.1007/s00205-009-0220-2. Google Scholar

[3]

A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko system with non-equal wave speed propagation,, Dynamic Systems and Applications, 21 (2012), 133. Google Scholar

[4]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod,, J. Math. Anal. appl., 167 (1992), 429. doi: 10.1016/0022-247X(92)90217-2. Google Scholar

[5]

Z. J. Han and G. Q. Xu, Exponential decay result in non-uniform porous-thermo-elasticity model of Lord-Shulman type,, Disc. Cont. Dyn. Sys. B, 17 (2012), 57. doi: 10.3934/dcdsb.2012.17.57. Google Scholar

[6]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity,, J. Mech. Phys. Sol., 15 (1967), 299. doi: 10.1016/0022-5096(67)90024-5. Google Scholar

[7]

A. Magaña and R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials,, Internat. J. Solids Struct., 43 (2006), 3414. doi: 10.1016/j.ijsolstr.2005.06.077. Google Scholar

[8]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of equal speeds,, Nonlinear analysis: TMA, 74 (2011), 6895. doi: 10.1016/j.na.2011.07.012. Google Scholar

[9]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of nonequal speeds,, Acta Mathimatica Scientia, 33 (2013), 23. doi: 10.1016/S0252-9602(12)60192-1. Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear damped Timoshenko system with second sound - Global existence and exponential stability,, Math. Meth. Appl. Sci., 32 (2009), 505. doi: 10.1002/mma.1049. Google Scholar

[11]

J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity,, Funkcial Ekvac., 35 (1992), 19. Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[13]

J. E. Muñoz Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids,, J. Math. Anal. Appl., 338 (2008), 1296. doi: 10.1016/j.jmaa.2007.06.005. Google Scholar

[14]

R. Quintanilla, Slow decay in one-dimensional porous dissipation elasticity,, Applied Math. Letters, 16 (2003), 487. doi: 10.1016/S0893-9659(03)00025-9. Google Scholar

[15]

R. Racke, Thermoelasticity with second sound, exponential stability in linear and non linear 1-d,, Math. Meth. Appl. Sci., 25 (2002), 409. doi: 10.1002/mma.298. Google Scholar

[16]

R. Racke, Asymptotic behavior of solutions in linear 2- or 3-D thermoelasticity with second sound,, Quart. Appl. Math., 61 (2003), 315. Google Scholar

[17]

M. L. Santos, D. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound,, J. Diff. Eqns., 253 (2012), 2715. doi: 10.1016/j.jde.2012.07.012. Google Scholar

[18]

A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type,, Appl. Anal., 87 (2008), 451. doi: 10.1080/00036810802035634. Google Scholar

[19]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound,, Quarterly of Applied Mathematics, 50 (1992), 727. Google Scholar

show all references

References:
[1]

P. S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous thermoelasticity,, Mech. Res. Comm., 32 (2005), 652. doi: 10.1016/j.mechrescom.2005.02.015. Google Scholar

[2]

H. D. Fernàndez-Sare and R. Racke, On the stability of damped Timoshenko system Cattaneo versus Fourier law$^*$,, Arch. Rat. Mech. Anal., 194 (2009), 221. doi: 10.1007/s00205-009-0220-2. Google Scholar

[3]

A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko system with non-equal wave speed propagation,, Dynamic Systems and Applications, 21 (2012), 133. Google Scholar

[4]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod,, J. Math. Anal. appl., 167 (1992), 429. doi: 10.1016/0022-247X(92)90217-2. Google Scholar

[5]

Z. J. Han and G. Q. Xu, Exponential decay result in non-uniform porous-thermo-elasticity model of Lord-Shulman type,, Disc. Cont. Dyn. Sys. B, 17 (2012), 57. doi: 10.3934/dcdsb.2012.17.57. Google Scholar

[6]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity,, J. Mech. Phys. Sol., 15 (1967), 299. doi: 10.1016/0022-5096(67)90024-5. Google Scholar

[7]

A. Magaña and R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials,, Internat. J. Solids Struct., 43 (2006), 3414. doi: 10.1016/j.ijsolstr.2005.06.077. Google Scholar

[8]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of equal speeds,, Nonlinear analysis: TMA, 74 (2011), 6895. doi: 10.1016/j.na.2011.07.012. Google Scholar

[9]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of nonequal speeds,, Acta Mathimatica Scientia, 33 (2013), 23. doi: 10.1016/S0252-9602(12)60192-1. Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear damped Timoshenko system with second sound - Global existence and exponential stability,, Math. Meth. Appl. Sci., 32 (2009), 505. doi: 10.1002/mma.1049. Google Scholar

[11]

J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity,, Funkcial Ekvac., 35 (1992), 19. Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[13]

J. E. Muñoz Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids,, J. Math. Anal. Appl., 338 (2008), 1296. doi: 10.1016/j.jmaa.2007.06.005. Google Scholar

[14]

R. Quintanilla, Slow decay in one-dimensional porous dissipation elasticity,, Applied Math. Letters, 16 (2003), 487. doi: 10.1016/S0893-9659(03)00025-9. Google Scholar

[15]

R. Racke, Thermoelasticity with second sound, exponential stability in linear and non linear 1-d,, Math. Meth. Appl. Sci., 25 (2002), 409. doi: 10.1002/mma.298. Google Scholar

[16]

R. Racke, Asymptotic behavior of solutions in linear 2- or 3-D thermoelasticity with second sound,, Quart. Appl. Math., 61 (2003), 315. Google Scholar

[17]

M. L. Santos, D. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound,, J. Diff. Eqns., 253 (2012), 2715. doi: 10.1016/j.jde.2012.07.012. Google Scholar

[18]

A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type,, Appl. Anal., 87 (2008), 451. doi: 10.1080/00036810802035634. Google Scholar

[19]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound,, Quarterly of Applied Mathematics, 50 (1992), 727. Google Scholar

[1]

Salah Drabla, Salim A. Messaoudi, Fairouz Boulanouar. A general decay result for a multi-dimensional weakly damped thermoelastic system with second sound. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1329-1339. doi: 10.3934/dcdsb.2017064

[2]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[3]

Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

[4]

Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671

[5]

Ivan C. Christov. On a C-integrable equation for second sound propagation in heated dielectrics. Evolution Equations & Control Theory, 2019, 8 (1) : 57-72. doi: 10.3934/eect.2019004

[6]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[7]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[8]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[9]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[10]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[11]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[12]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[13]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[14]

Jiang Xu. Well-posedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1073-1092. doi: 10.3934/cpaa.2009.8.1073

[15]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems & Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[16]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[17]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[18]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[19]

Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171

[20]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]