March  2015, 20(2): 339-371. doi: 10.3934/dcdsb.2015.20.339

On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields

1. 

Institut de Mathématiques de Marseille UMR 7353, Aix Marseille Université, CNRS, Centrale Marseille, 13453 Marseille, France

Received  September 2013 Revised  September 2014 Published  January 2015

The subject matter of this paper concerns the paraxial approximation for the transport of charged particles. We focus on the magnetic confinement properties of charged particle beams. The collisions between particles are taken into account through the Boltzmann kernel. We derive the magnetic high field limit and we emphasize the main properties of the averaged Boltzmann collision kernel, together with its equilibria.
Citation: Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339
References:
[1]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime,, Asymptot. Anal., 61 (2009), 91. Google Scholar

[2]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics,, J. Differential Equations, 249 (2010), 1620. doi: 10.1016/j.jde.2010.07.010. Google Scholar

[3]

M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation,, SIAM J. Multiscale Model. Simul., 8 (2010), 1923. doi: 10.1137/090777621. Google Scholar

[4]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetized plasmas,, C. R. Math. Acad. Sci. Paris, 350 (2012), 879. doi: 10.1016/j.crma.2012.09.019. Google Scholar

[5]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation,, Quart. Appl. Math., 72 (2014), 323. doi: 10.1090/S0033-569X-2014-01356-1. Google Scholar

[6]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker-Planck-Landau equation,, to appear in Quart. Appl. Math., (). Google Scholar

[7]

A. J. Brizard, A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields,, Phys. Plasmas, 11 (2004), 4429. doi: 10.1063/1.1780532. Google Scholar

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Modern Phys., 79 (2007), 421. doi: 10.1103/RevModPhys.79.421. Google Scholar

[9]

C. Cercignani, The Boltzmann Equation and Its Applications,, Springer-Verlag New-York 1988., (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[10]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,, Applied Mathematical Sciences, (1994). doi: 10.1007/978-1-4419-8524-8. Google Scholar

[11]

R. C. Davidson and H. Qin, Physics of Charged Particle Beams in High Energy Accelerators,, Imperial College Press, (2001). doi: 10.1142/p250. Google Scholar

[12]

P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system,, Math. Models Meth. Appl. Sci., 3 (1993), 513. doi: 10.1142/S0218202593000278. Google Scholar

[13]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation,, Math. Models Methods Appl. Sci., 16 (2006), 763. doi: 10.1142/S0218202506001340. Google Scholar

[14]

E. Frénod, Application of the averaging method to the gyrokinetic plasma,, Asymptot. Anal., 46 (2006), 1. Google Scholar

[15]

E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates,, J. Pures Appl. Math. Adv. Appl., 4 (2010), 135. Google Scholar

[16]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field,, Asymptotic Anal., 18 (1998), 193. Google Scholar

[17]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227. doi: 10.1137/S0036141099364243. Google Scholar

[18]

X. Garbet, G. Dif-Pradalier, C. Nguyen, Y. Sarazin, V. Grandgirard and Ph. Ghendrih, Neoclassical equilibrium in gyrokinetic simulations,, Phys, 16 (2009). doi: 10.1063/1.3153328. Google Scholar

[19]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field,, J. Math. Pures Appl., 78 (1999), 791. doi: 10.1016/S0021-7824(99)00021-5. Google Scholar

[20]

G. Laval, S. Mas-Gallic and P.-A. Raviart, Paraxial approximation of ultra-relativistic intense beams,, Numer. Math., 69 (1994), 33. doi: 10.1007/s002110050079. Google Scholar

[21]

D. Levermore, Moment closure hierarchies for kinetic theories,, J. Statist. Phys., 83 (1996), 1021. doi: 10.1007/BF02179552. Google Scholar

[22]

J. Madsen, Gyrokinetic linearized Landau collision operator,, Phys. Review, 87 (2013). doi: 10.1103/PhysRevE.87.011101. Google Scholar

[23]

P.-A. Raviart, Paraxial approximation of the stationary Vlasov-Maxwell equations,, in Nonlinear Partial Differential Equations and Their Applications, (1994), 1991. Google Scholar

[24]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Z. Wahrsch. Verw. Gebiele, 46 (): 67. doi: 10.1007/BF00535689. Google Scholar

[25]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Statist. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756. Google Scholar

[26]

G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation,, Comm. Math. Phys., 203 (1999), 667. doi: 10.1007/s002200050631. Google Scholar

[27]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106. Google Scholar

[28]

C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique,, Master's thesis, (2000). Google Scholar

[29]

X. Q. Xu and M. N. Rosenbluth, Numerical simulation of ion-temperature-gradient-driven modes,, Phys. Fluids B, 3 (1991), 627. doi: 10.1063/1.859862. Google Scholar

show all references

References:
[1]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime,, Asymptot. Anal., 61 (2009), 91. Google Scholar

[2]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics,, J. Differential Equations, 249 (2010), 1620. doi: 10.1016/j.jde.2010.07.010. Google Scholar

[3]

M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation,, SIAM J. Multiscale Model. Simul., 8 (2010), 1923. doi: 10.1137/090777621. Google Scholar

[4]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetized plasmas,, C. R. Math. Acad. Sci. Paris, 350 (2012), 879. doi: 10.1016/j.crma.2012.09.019. Google Scholar

[5]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation,, Quart. Appl. Math., 72 (2014), 323. doi: 10.1090/S0033-569X-2014-01356-1. Google Scholar

[6]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker-Planck-Landau equation,, to appear in Quart. Appl. Math., (). Google Scholar

[7]

A. J. Brizard, A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields,, Phys. Plasmas, 11 (2004), 4429. doi: 10.1063/1.1780532. Google Scholar

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Modern Phys., 79 (2007), 421. doi: 10.1103/RevModPhys.79.421. Google Scholar

[9]

C. Cercignani, The Boltzmann Equation and Its Applications,, Springer-Verlag New-York 1988., (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[10]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,, Applied Mathematical Sciences, (1994). doi: 10.1007/978-1-4419-8524-8. Google Scholar

[11]

R. C. Davidson and H. Qin, Physics of Charged Particle Beams in High Energy Accelerators,, Imperial College Press, (2001). doi: 10.1142/p250. Google Scholar

[12]

P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system,, Math. Models Meth. Appl. Sci., 3 (1993), 513. doi: 10.1142/S0218202593000278. Google Scholar

[13]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation,, Math. Models Methods Appl. Sci., 16 (2006), 763. doi: 10.1142/S0218202506001340. Google Scholar

[14]

E. Frénod, Application of the averaging method to the gyrokinetic plasma,, Asymptot. Anal., 46 (2006), 1. Google Scholar

[15]

E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates,, J. Pures Appl. Math. Adv. Appl., 4 (2010), 135. Google Scholar

[16]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field,, Asymptotic Anal., 18 (1998), 193. Google Scholar

[17]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227. doi: 10.1137/S0036141099364243. Google Scholar

[18]

X. Garbet, G. Dif-Pradalier, C. Nguyen, Y. Sarazin, V. Grandgirard and Ph. Ghendrih, Neoclassical equilibrium in gyrokinetic simulations,, Phys, 16 (2009). doi: 10.1063/1.3153328. Google Scholar

[19]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field,, J. Math. Pures Appl., 78 (1999), 791. doi: 10.1016/S0021-7824(99)00021-5. Google Scholar

[20]

G. Laval, S. Mas-Gallic and P.-A. Raviart, Paraxial approximation of ultra-relativistic intense beams,, Numer. Math., 69 (1994), 33. doi: 10.1007/s002110050079. Google Scholar

[21]

D. Levermore, Moment closure hierarchies for kinetic theories,, J. Statist. Phys., 83 (1996), 1021. doi: 10.1007/BF02179552. Google Scholar

[22]

J. Madsen, Gyrokinetic linearized Landau collision operator,, Phys. Review, 87 (2013). doi: 10.1103/PhysRevE.87.011101. Google Scholar

[23]

P.-A. Raviart, Paraxial approximation of the stationary Vlasov-Maxwell equations,, in Nonlinear Partial Differential Equations and Their Applications, (1994), 1991. Google Scholar

[24]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Z. Wahrsch. Verw. Gebiele, 46 (): 67. doi: 10.1007/BF00535689. Google Scholar

[25]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Statist. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756. Google Scholar

[26]

G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation,, Comm. Math. Phys., 203 (1999), 667. doi: 10.1007/s002200050631. Google Scholar

[27]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106. Google Scholar

[28]

C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique,, Master's thesis, (2000). Google Scholar

[29]

X. Q. Xu and M. N. Rosenbluth, Numerical simulation of ion-temperature-gradient-driven modes,, Phys. Fluids B, 3 (1991), 627. doi: 10.1063/1.859862. Google Scholar

[1]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[2]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[3]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[4]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[5]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[6]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[7]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[8]

Thierry Goudon, Martin Parisot. Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime. Kinetic & Related Models, 2011, 4 (3) : 735-766. doi: 10.3934/krm.2011.4.735

[9]

Valerii Los, Vladimir A. Mikhailets, Aleksandr A. Murach. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Communications on Pure & Applied Analysis, 2017, 16 (1) : 69-98. doi: 10.3934/cpaa.2017003

[10]

Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic & Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333

[11]

Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks & Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113

[12]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[13]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[14]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[15]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[16]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[17]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[18]

Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002

[19]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[20]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]