• Previous Article
    Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model
  • DCDS-B Home
  • This Issue
  • Next Article
    Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells
November  2015, 20(9): 3235-3254. doi: 10.3934/dcdsb.2015.20.3235

Global classical solutions of a 3D chemotaxis-Stokes system with rotation

1. 

School of Science, Xihua University, Chengdu 610039, China

2. 

Institut für Mathematik, Universität Paderborn, Paderborn 33098, Germany

Received  September 2014 Revised  December 2014 Published  September 2015

This paper considers the chemotaxis-Stokes system $$\begin{cases} \displaystyle n_t+u\cdot\nabla n=\Delta n-\nabla\cdot(nS(x,n,c)\cdot\nabla c), &(x,t)\in \Omega\times (0,T),\\ \displaystyle c_t+u\cdot\nabla c=\Delta c-nc, &(x,t)\in\Omega\times (0,T),\qquad(\star)\\ \displaystyle u_t=\Delta u+\nabla P+n\nabla\phi , &(x,t)\in\Omega\times (0,T),\\ \nabla\cdot u=0,&(x,t)\in\Omega\times (0,T). \end{cases}$$ under no-flux boundary conditions in a bounded domain $\Omega \subset \mathbb{R}^3$ with smooth boundary. Here $S$ is a matrix-valued sensitivity satisfying $|S(x,n,c)|<\tilde{C}(1+n)^{-\alpha}$ with some $\tilde{C}>0$ and $\alpha>0$. Although $(\star)$ does not possess the natural gradient-like functional structure available when $S$ reduces to a scalar function, we can still establish a new energy type inequality. Based on this inequality we achieve a coupled estimate for arbitrarily high Lebesgue norms of $n$ and $\nabla c$. This helps us to finally obtain the existence of a global classical solution when $\alpha$ is bigger than $\frac{1}{6}$.
Citation: Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235
References:
[1]

X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation,, Nonlinearity, 27 (2014), 1899. doi: 10.1088/0951-7715/27/8/1899. Google Scholar

[2]

M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations,, Discrete Continuous Dynam. Systems, 33 (2013), 2271. doi: 10.3934/dcds.2013.33.2271. Google Scholar

[3]

M. Chae, K. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations,, Comm. Part. Diff. Eqs., 39 (2014), 1205. doi: 10.1080/03605302.2013.852224. Google Scholar

[4]

R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Part. Diff. Eqs., 35 (2010), 1635. doi: 10.1080/03605302.2010.497199. Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3. Google Scholar

[6]

Y. Giga and H. Sohr, Abstract $L^p$ estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Anal., 102 (1991), 72. doi: 10.1016/0022-1236(91)90136-S. Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981). Google Scholar

[8]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[9]

T. Li, A. Suen, M. Winkler and C. Xue, Gobal small-data solutions in a chemotaxis system with rotation,, Math. Mod. Meth. Appl. Sci., (2015), 721. Google Scholar

[10]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence,, Ann. I. H. Poincaré Anal. Non Linéaire, 28 (2011), 643. doi: 10.1016/j.anihpc.2011.04.005. Google Scholar

[11]

J. L. Lions, Équations Différentielles Opérationnelles et Problémes aux Limites,, Die Grundlehren der mathematischen Wissenschaften, (1961). Google Scholar

[12]

A. Lorz, Coupled chemotaxis fluid equations,, Math. Mod. Meth. Appl. Sci., 20 (2010), 987. doi: 10.1142/S0218202510004507. Google Scholar

[13]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968). Google Scholar

[14]

Y. Lou, Y. Tao and M. Winkler, Approching the ideal free distribution in two-species copetition models with fitness-dependent dispersal,, SIAM J. Math. Anal., 46 (2014), 1228. doi: 10.1137/130934246. Google Scholar

[15]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501. Google Scholar

[16]

M. M. Porzio and V. Vespri, Hölder estimate for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045. Google Scholar

[17]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up,Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007). Google Scholar

[18]

H. Sohr, The Navier-Stokes Equations. an Elementary Functional Analytic Approach,, Birkhăuser, (2001). doi: 10.1007/978-3-0348-8255-2. Google Scholar

[19]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521. doi: 10.1016/j.jmaa.2011.02.041. Google Scholar

[20]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685. doi: 10.1137/100802943. Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[22]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520. doi: 10.1016/j.jde.2011.07.010. Google Scholar

[23]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion,, Ann. I. H. Poincaré, 30 (2013), 157. doi: 10.1016/j.anihpc.2012.07.002. Google Scholar

[24]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proc. Nat. Acad. Sci., 102 (2005), 2277. Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops,, Comm. Part. Diff. Eqs., 37 (2012), 319. doi: 10.1080/03605302.2011.591865. Google Scholar

[27]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455. doi: 10.1007/s00205-013-0678-9. Google Scholar

[28]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, (2015). doi: 10.1016/j.anihpc.2015.05.002. Google Scholar

[29]

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population,, SIAM J. Appl. Math., 70 (2009), 133. doi: 10.1137/070711505. Google Scholar

[30]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations,, SIAM J. Math. Anal., 46 (2014), 3078. doi: 10.1137/130936920. Google Scholar

show all references

References:
[1]

X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation,, Nonlinearity, 27 (2014), 1899. doi: 10.1088/0951-7715/27/8/1899. Google Scholar

[2]

M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations,, Discrete Continuous Dynam. Systems, 33 (2013), 2271. doi: 10.3934/dcds.2013.33.2271. Google Scholar

[3]

M. Chae, K. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations,, Comm. Part. Diff. Eqs., 39 (2014), 1205. doi: 10.1080/03605302.2013.852224. Google Scholar

[4]

R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Part. Diff. Eqs., 35 (2010), 1635. doi: 10.1080/03605302.2010.497199. Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3. Google Scholar

[6]

Y. Giga and H. Sohr, Abstract $L^p$ estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Anal., 102 (1991), 72. doi: 10.1016/0022-1236(91)90136-S. Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981). Google Scholar

[8]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[9]

T. Li, A. Suen, M. Winkler and C. Xue, Gobal small-data solutions in a chemotaxis system with rotation,, Math. Mod. Meth. Appl. Sci., (2015), 721. Google Scholar

[10]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence,, Ann. I. H. Poincaré Anal. Non Linéaire, 28 (2011), 643. doi: 10.1016/j.anihpc.2011.04.005. Google Scholar

[11]

J. L. Lions, Équations Différentielles Opérationnelles et Problémes aux Limites,, Die Grundlehren der mathematischen Wissenschaften, (1961). Google Scholar

[12]

A. Lorz, Coupled chemotaxis fluid equations,, Math. Mod. Meth. Appl. Sci., 20 (2010), 987. doi: 10.1142/S0218202510004507. Google Scholar

[13]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968). Google Scholar

[14]

Y. Lou, Y. Tao and M. Winkler, Approching the ideal free distribution in two-species copetition models with fitness-dependent dispersal,, SIAM J. Math. Anal., 46 (2014), 1228. doi: 10.1137/130934246. Google Scholar

[15]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501. Google Scholar

[16]

M. M. Porzio and V. Vespri, Hölder estimate for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045. Google Scholar

[17]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up,Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007). Google Scholar

[18]

H. Sohr, The Navier-Stokes Equations. an Elementary Functional Analytic Approach,, Birkhăuser, (2001). doi: 10.1007/978-3-0348-8255-2. Google Scholar

[19]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521. doi: 10.1016/j.jmaa.2011.02.041. Google Scholar

[20]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685. doi: 10.1137/100802943. Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[22]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520. doi: 10.1016/j.jde.2011.07.010. Google Scholar

[23]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion,, Ann. I. H. Poincaré, 30 (2013), 157. doi: 10.1016/j.anihpc.2012.07.002. Google Scholar

[24]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proc. Nat. Acad. Sci., 102 (2005), 2277. Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops,, Comm. Part. Diff. Eqs., 37 (2012), 319. doi: 10.1080/03605302.2011.591865. Google Scholar

[27]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455. doi: 10.1007/s00205-013-0678-9. Google Scholar

[28]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, (2015). doi: 10.1016/j.anihpc.2015.05.002. Google Scholar

[29]

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population,, SIAM J. Appl. Math., 70 (2009), 133. doi: 10.1137/070711505. Google Scholar

[30]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations,, SIAM J. Math. Anal., 46 (2014), 3078. doi: 10.1137/130936920. Google Scholar

[1]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[2]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[3]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[4]

Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901

[5]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[6]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[7]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[8]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[9]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[10]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[11]

Ying Zhang. Wave breaking and global existence for the periodic rotation-Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2243-2257. doi: 10.3934/dcds.2017097

[12]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[13]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[14]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[15]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[16]

Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

[17]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[18]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[19]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[20]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]