November  2015, 20(9): 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China, China

2. 

School of Mathematical Science, Heilongjiang University, Harbin 150080, China

Received  August 2014 Revised  January 2015 Published  September 2015

In this paper, we formulate a viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. The model can describe the in vivo infection dynamics of many viruses such as HIV-I, HCV, and HBV, where the infected cells of eclipse stage can revert to the uninfected class. Under certain parameters range, we establish that the global stability of equilibria is completely determined by the basic reproduction number $\mathfrak{R}_0$, which give us a complete picture on their global dynamics.
Citation: Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215
References:
[1]

S. Bonhoeffer, J. Coffin and M. Nowak, Human immunodeficiency virus drug therapy and virus load,, J. Virol., 71 (1997), 3275.

[2]

B. Buonomo and C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells,, J. Math. Anal. Appl., 385 (2012), 709. doi: 10.1016/j.jmaa.2011.07.006.

[3]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Animal Ecol., 44 (1975), 331. doi: 10.2307/3866.

[4]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881.

[5]

P. Essunger and A. S. Perelson, Modeling HIV infection of CD4$^+$ T-cell subpopulations,, J. Theoret. Biol., 170 (1994), 367. doi: 10.1006/jtbi.1994.1199.

[6]

D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphnia magna,, Oecologia, 122 (2000), 200. doi: 10.1007/PL00008847.

[7]

V. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay,, Proc. Nat. Acad. Sci., 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247.

[8]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[9]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[10]

Z. Hu, W. Pang, F. Liao and W. Ma, Analysis of a CD$4^{+}$ T Cell viral infection model with a class of saturated infection rate,, Disc. Cont. Dyn. Sys. B, 19 (2014), 735. doi: 10.3934/dcdsb.2014.19.735.

[11]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate,, Math. Med. Bio., 26 (2009), 225.

[12]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001.

[13]

A. Korobeinikov, Global properties of infectious disease model with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y.

[14]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Anal.: Real World Appl., 13 (2012), 1802. doi: 10.1016/j.nonrwa.2011.12.011.

[15]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993).

[16]

X. Liu, H. Wang, Z. Hu and W. Ma, Global stability of an HIV pathogenesis model with cure rate,, Nonlinear Anal.: Real World Appl., 12 (2011), 2947. doi: 10.1016/j.nonrwa.2011.04.016.

[17]

S. Lewin, T. Walters and S. Locarnini, Hepatitis B treatment: Rational combination chemotherapy based on viral kinetic and animal model studies,, Antiviral Research, 55 (2002), 381. doi: 10.1016/S0166-3542(02)00071-2.

[18]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[19]

M. Y. Li and H. Shu, Impact of intracellular delay and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322.

[20]

D. Li and W. Ma, Asymptotic properties of an HIV-1 infection model with time delay,, J. Math. Anal. Appl., 335 (2007), 683. doi: 10.1016/j.jmaa.2007.02.006.

[21]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general non linear incidence,, Math. Biosci. Eng., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837.

[22]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal.: Real World Appl., 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014.

[23]

J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients,, Math. Biosci., 152 (1998), 143. doi: 10.1016/S0025-5564(98)10027-5.

[24]

M. Nowak and R. M. May, Virus Dynamics,, Cambridge University Press, (2000).

[25]

M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas and H. Mcdade, Viral dynamics in hepatitis B virus infection,, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398. doi: 10.1073/pnas.93.9.4398.

[26]

Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays,, J. Math. Anal. Appl., 375 (2011), 14. doi: 10.1016/j.jmaa.2010.08.025.

[27]

A. S. Perelson, D. E. Kirschner and R. de Boer, Dynamics of HIV infection of CD4 T cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A.

[28]

A. S. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582.

[29]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107.

[30]

L. Rong, M. A. Gilchrist, Z. Feng and A. S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility,, J. Theoret. Biol., 247 (2007), 804. doi: 10.1016/j.jtbi.2007.04.014.

[31]

R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology,, Proc. R. Soc. Lond. Ser., 269 (2002), 271. doi: 10.1098/rspb.2001.1816.

[32]

X. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics,, J. Math. Anal. Appl., 329 (2007), 281. doi: 10.1016/j.jmaa.2006.06.064.

[33]

P. K. Srivastava and P. Chandra, Modeling the dynamics of HIV and CD4+ T cells during primary infection,, Nonlinear Anal.: Real World Appl., 11 (2010), 612. doi: 10.1016/j.nonrwa.2008.10.037.

[34]

Y. Tian and X. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate,, Nonlinear Anal.: Real World Appl., 16 (2014), 17. doi: 10.1016/j.nonrwa.2013.09.002.

[35]

J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Math. Med. Biol., 29 (2012), 283. doi: 10.1093/imammb/dqr009.

[36]

J. Wang and L. Guan, Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay,, Disc. Cont. Dyn. Sys. B, 17 (2012), 297. doi: 10.3934/dcdsb.2012.17.297.

[37]

J. Wang, J. Pang and T. Kuniya, A note on global stability for malaria infections model with latencies,, Math. Biosci. Eng., 11 (2014), 995. doi: 10.3934/mbe.2014.11.995.

[38]

J. Wang, J. Pang, T. Kuniya and Y. Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays,, Appl. Math. Comput., 241 (2014), 298. doi: 10.1016/j.amc.2014.05.015.

[39]

J. Wang and S. Liu, The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression,, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015), 263. doi: 10.1016/j.cnsns.2014.04.027.

[40]

R. Xu, Global stability ofan HIV-1 infection model with saturation infection and intracellular delay,, J. Math. Anal. Appl., 375 (2011), 75. doi: 10.1016/j.jmaa.2010.08.055.

[41]

Z. Yuan and X. Zou, Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays,, Math. Biosci. Eng., 10 (2013), 483. doi: 10.3934/mbe.2013.10.483.

[42]

C. Lv, L. Huang and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response,, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 121. doi: 10.1016/j.cnsns.2013.06.025.

[43]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,, Math. Med. Biol., 25 (2008), 99. doi: 10.1093/imammb/dqm010.

[44]

J. A. Zack, S. J. Arrigo, S. R. Weitsman, A. S. Go, A. Haislip and I. S. Chen, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile latent viral structure,, Cell, 61 (1990), 213. doi: 10.1016/0092-8674(90)90802-L.

[45]

J. A. Zack, A. M. Haislip, P. Krogstad and I. S. Chen, Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral cycle,, J. Virol., 66 (1992), 1717.

[46]

X. Y. Zhou, X. Y. Song and X. Y. Shi, A differential equation model of HIV infection of CD4$^+$ T-cells with cure rate,, J. Math. Anal. Appl., 342 (2008), 1342. doi: 10.1016/j.jmaa.2008.01.008.

show all references

References:
[1]

S. Bonhoeffer, J. Coffin and M. Nowak, Human immunodeficiency virus drug therapy and virus load,, J. Virol., 71 (1997), 3275.

[2]

B. Buonomo and C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells,, J. Math. Anal. Appl., 385 (2012), 709. doi: 10.1016/j.jmaa.2011.07.006.

[3]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Animal Ecol., 44 (1975), 331. doi: 10.2307/3866.

[4]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881.

[5]

P. Essunger and A. S. Perelson, Modeling HIV infection of CD4$^+$ T-cell subpopulations,, J. Theoret. Biol., 170 (1994), 367. doi: 10.1006/jtbi.1994.1199.

[6]

D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphnia magna,, Oecologia, 122 (2000), 200. doi: 10.1007/PL00008847.

[7]

V. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay,, Proc. Nat. Acad. Sci., 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247.

[8]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[9]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[10]

Z. Hu, W. Pang, F. Liao and W. Ma, Analysis of a CD$4^{+}$ T Cell viral infection model with a class of saturated infection rate,, Disc. Cont. Dyn. Sys. B, 19 (2014), 735. doi: 10.3934/dcdsb.2014.19.735.

[11]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate,, Math. Med. Bio., 26 (2009), 225.

[12]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001.

[13]

A. Korobeinikov, Global properties of infectious disease model with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y.

[14]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Anal.: Real World Appl., 13 (2012), 1802. doi: 10.1016/j.nonrwa.2011.12.011.

[15]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993).

[16]

X. Liu, H. Wang, Z. Hu and W. Ma, Global stability of an HIV pathogenesis model with cure rate,, Nonlinear Anal.: Real World Appl., 12 (2011), 2947. doi: 10.1016/j.nonrwa.2011.04.016.

[17]

S. Lewin, T. Walters and S. Locarnini, Hepatitis B treatment: Rational combination chemotherapy based on viral kinetic and animal model studies,, Antiviral Research, 55 (2002), 381. doi: 10.1016/S0166-3542(02)00071-2.

[18]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[19]

M. Y. Li and H. Shu, Impact of intracellular delay and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322.

[20]

D. Li and W. Ma, Asymptotic properties of an HIV-1 infection model with time delay,, J. Math. Anal. Appl., 335 (2007), 683. doi: 10.1016/j.jmaa.2007.02.006.

[21]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general non linear incidence,, Math. Biosci. Eng., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837.

[22]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal.: Real World Appl., 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014.

[23]

J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients,, Math. Biosci., 152 (1998), 143. doi: 10.1016/S0025-5564(98)10027-5.

[24]

M. Nowak and R. M. May, Virus Dynamics,, Cambridge University Press, (2000).

[25]

M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas and H. Mcdade, Viral dynamics in hepatitis B virus infection,, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398. doi: 10.1073/pnas.93.9.4398.

[26]

Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays,, J. Math. Anal. Appl., 375 (2011), 14. doi: 10.1016/j.jmaa.2010.08.025.

[27]

A. S. Perelson, D. E. Kirschner and R. de Boer, Dynamics of HIV infection of CD4 T cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A.

[28]

A. S. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582.

[29]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107.

[30]

L. Rong, M. A. Gilchrist, Z. Feng and A. S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility,, J. Theoret. Biol., 247 (2007), 804. doi: 10.1016/j.jtbi.2007.04.014.

[31]

R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology,, Proc. R. Soc. Lond. Ser., 269 (2002), 271. doi: 10.1098/rspb.2001.1816.

[32]

X. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics,, J. Math. Anal. Appl., 329 (2007), 281. doi: 10.1016/j.jmaa.2006.06.064.

[33]

P. K. Srivastava and P. Chandra, Modeling the dynamics of HIV and CD4+ T cells during primary infection,, Nonlinear Anal.: Real World Appl., 11 (2010), 612. doi: 10.1016/j.nonrwa.2008.10.037.

[34]

Y. Tian and X. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate,, Nonlinear Anal.: Real World Appl., 16 (2014), 17. doi: 10.1016/j.nonrwa.2013.09.002.

[35]

J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Math. Med. Biol., 29 (2012), 283. doi: 10.1093/imammb/dqr009.

[36]

J. Wang and L. Guan, Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay,, Disc. Cont. Dyn. Sys. B, 17 (2012), 297. doi: 10.3934/dcdsb.2012.17.297.

[37]

J. Wang, J. Pang and T. Kuniya, A note on global stability for malaria infections model with latencies,, Math. Biosci. Eng., 11 (2014), 995. doi: 10.3934/mbe.2014.11.995.

[38]

J. Wang, J. Pang, T. Kuniya and Y. Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays,, Appl. Math. Comput., 241 (2014), 298. doi: 10.1016/j.amc.2014.05.015.

[39]

J. Wang and S. Liu, The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression,, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015), 263. doi: 10.1016/j.cnsns.2014.04.027.

[40]

R. Xu, Global stability ofan HIV-1 infection model with saturation infection and intracellular delay,, J. Math. Anal. Appl., 375 (2011), 75. doi: 10.1016/j.jmaa.2010.08.055.

[41]

Z. Yuan and X. Zou, Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays,, Math. Biosci. Eng., 10 (2013), 483. doi: 10.3934/mbe.2013.10.483.

[42]

C. Lv, L. Huang and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response,, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 121. doi: 10.1016/j.cnsns.2013.06.025.

[43]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,, Math. Med. Biol., 25 (2008), 99. doi: 10.1093/imammb/dqm010.

[44]

J. A. Zack, S. J. Arrigo, S. R. Weitsman, A. S. Go, A. Haislip and I. S. Chen, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile latent viral structure,, Cell, 61 (1990), 213. doi: 10.1016/0092-8674(90)90802-L.

[45]

J. A. Zack, A. M. Haislip, P. Krogstad and I. S. Chen, Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral cycle,, J. Virol., 66 (1992), 1717.

[46]

X. Y. Zhou, X. Y. Song and X. Y. Shi, A differential equation model of HIV infection of CD4$^+$ T-cells with cure rate,, J. Math. Anal. Appl., 342 (2008), 1342. doi: 10.1016/j.jmaa.2008.01.008.

[1]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[2]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[3]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[4]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[5]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[6]

Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

[7]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[8]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[9]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[10]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[11]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[12]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[13]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[14]

Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207

[15]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[16]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[17]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[18]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[19]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[20]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]