January  2015, 20(1): 281-293. doi: 10.3934/dcdsb.2015.20.281

Functional solution about stochastic differential equation driven by $G$-Brownian motion

1. 

Department of Mathematics, Honghe University, Mengzi, 661199, China, China

Received  February 2013 Revised  June 2013 Published  November 2014

Peng introduced the notions of $G$-expectation and $G$-Brownian motion as well as $G$-Itô formula in 2006. The $G$-Brownian motion has many rich and new properties comparing to classical Brownian motion. In this paper, we present a method to solve stochastic differential equation driven by $G$-Brownian motion without using $G$-Itô formula. Our method is mainly depending on Frobenius's Theorem. Many classical models in mathematical finance are investigated to illustrate the method. As a by-product, this financial models are extended to the case of $G$-Brownian motion.
Citation: Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281
References:
[1]

W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,, 2nd edition, (1986). Google Scholar

[2]

L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: Application to $G$-Brownian motion paths,, Potential Anal., 34 (2010), 139. doi: 10.1007/s11118-010-9185-x. Google Scholar

[3]

H. Doss, Liens entre équations différentielles stochastiques et ordinaires,, (French) C. R. Acad. Sci. Paris Sér. A-B, 283 (1976). Google Scholar

[4]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion,, Stoch. Proc. Appl., 119 (2009), 3356. doi: 10.1016/j.spa.2009.05.010. Google Scholar

[5]

M. Hu, S. Ji, S. Peng and Y. Song, Backward stochastic differential equations driven by $G$-Brownian motion,, Stochastic Process. Appl., 124 (2014), 759. doi: 10.1016/j.spa.2013.09.010. Google Scholar

[6]

K. Itô, On stochastic differential equations,, Mem. Amer. Math. Soc., 1951 (1951). Google Scholar

[7]

X. Li and S. Peng, Stopping times and related Itô's calculus with $G$-Brownian motion,, Stoch. Proc. Appl., 121 (2011), 1492. doi: 10.1016/j.spa.2011.03.009. Google Scholar

[8]

B. Øksendal, Stochastic Differential Equations. An Introduction with Applications,, Sixth edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[9]

S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô's type,, in Stochastic Analysis and Applications (eds. Benth, (2007), 541. doi: 10.1007/978-3-540-70847-6_25. Google Scholar

[10]

S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and $G$-Brownian motion,, preprint, (). Google Scholar

[11]

H. M. Soner, N. Touzi and J. Zhang, Martingale representation theorem for the $G$-expectation,, Stoch. Proc. Appl., 121 (2011), 265. doi: 10.1016/j.spa.2010.10.006. Google Scholar

[12]

J. Xu and B. Zhang, Martingale characterization of $G$-Brownian motion,, Stoch. Proc. Appl., 119 (2009), 232. doi: 10.1016/j.spa.2008.02.001. Google Scholar

show all references

References:
[1]

W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,, 2nd edition, (1986). Google Scholar

[2]

L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: Application to $G$-Brownian motion paths,, Potential Anal., 34 (2010), 139. doi: 10.1007/s11118-010-9185-x. Google Scholar

[3]

H. Doss, Liens entre équations différentielles stochastiques et ordinaires,, (French) C. R. Acad. Sci. Paris Sér. A-B, 283 (1976). Google Scholar

[4]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion,, Stoch. Proc. Appl., 119 (2009), 3356. doi: 10.1016/j.spa.2009.05.010. Google Scholar

[5]

M. Hu, S. Ji, S. Peng and Y. Song, Backward stochastic differential equations driven by $G$-Brownian motion,, Stochastic Process. Appl., 124 (2014), 759. doi: 10.1016/j.spa.2013.09.010. Google Scholar

[6]

K. Itô, On stochastic differential equations,, Mem. Amer. Math. Soc., 1951 (1951). Google Scholar

[7]

X. Li and S. Peng, Stopping times and related Itô's calculus with $G$-Brownian motion,, Stoch. Proc. Appl., 121 (2011), 1492. doi: 10.1016/j.spa.2011.03.009. Google Scholar

[8]

B. Øksendal, Stochastic Differential Equations. An Introduction with Applications,, Sixth edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[9]

S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô's type,, in Stochastic Analysis and Applications (eds. Benth, (2007), 541. doi: 10.1007/978-3-540-70847-6_25. Google Scholar

[10]

S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and $G$-Brownian motion,, preprint, (). Google Scholar

[11]

H. M. Soner, N. Touzi and J. Zhang, Martingale representation theorem for the $G$-expectation,, Stoch. Proc. Appl., 121 (2011), 265. doi: 10.1016/j.spa.2010.10.006. Google Scholar

[12]

J. Xu and B. Zhang, Martingale characterization of $G$-Brownian motion,, Stoch. Proc. Appl., 119 (2009), 232. doi: 10.1016/j.spa.2008.02.001. Google Scholar

[1]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[2]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[3]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[4]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[5]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019213

[7]

Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248

[8]

Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110

[9]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[10]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[11]

François Lalonde, Egor Shelukhin. Proof of the main conjecture on $g$-areas. Electronic Research Announcements, 2015, 22: 92-102. doi: 10.3934/era.2015.22.92

[12]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[15]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[16]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[17]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[18]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[19]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[20]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]