January  2015, 20(1): 231-248. doi: 10.3934/dcdsb.2015.20.231

The stability of bifurcating steady states of several classes of chemotaxis systems

1. 

Department of Basic Courses, Beijing Union University, Beijing 100101

Received  October 2013 Revised  July 2014 Published  November 2014

This paper concerns with the stability of bifurcating steady states obtained in [13] of several chemotaxis systems. By spectral analysis and the principle of the linearized stability, we prove that the bifurcating steady states are stable when the parameters satisfy some certain conditions.
Citation: Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231
References:
[1]

X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model,, Journal of Differential Equations, 257 (2014), 3102. doi: 10.1016/j.jde.2014.06.008. Google Scholar

[2]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux,, Kinetic and Related Models, 5 (2012), 51. doi: 10.3934/krm.2012.5.51. Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[4]

M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch.Rational Mech.Anal, 52 (1973), 161. Google Scholar

[5]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[6]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences I,, Jahresber. DMV, 105 (2003), 103. Google Scholar

[7]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences II,, Jahresber. DMV, 106 (2004), 51. Google Scholar

[8]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[9]

X. Lai, X. Chen, C. Qin and Y. Zhang, Existence, uniqueness, and stability of bubble solutions of a chemotaxis model,, preprint., (). Google Scholar

[10]

A. B. Potapov and T. Hillen, Metastability in chemotaxis models,, J. of Dynamics and Diff. Eqs., 17 (2005), 293. doi: 10.1007/s10884-005-2938-3. Google Scholar

[11]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. Amer. Math. Soc., 292 (1985), 531. doi: 10.1090/S0002-9947-1985-0808736-1. Google Scholar

[12]

B. Sleeman, M. Ward and J. Wei, The existence, stability, and dynamics of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790. doi: 10.1137/S0036139902415117. Google Scholar

[13]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem,, J. Math. Biol., 66 (2013), 1241. doi: 10.1007/s00285-012-0533-x. Google Scholar

show all references

References:
[1]

X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model,, Journal of Differential Equations, 257 (2014), 3102. doi: 10.1016/j.jde.2014.06.008. Google Scholar

[2]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux,, Kinetic and Related Models, 5 (2012), 51. doi: 10.3934/krm.2012.5.51. Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[4]

M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch.Rational Mech.Anal, 52 (1973), 161. Google Scholar

[5]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[6]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences I,, Jahresber. DMV, 105 (2003), 103. Google Scholar

[7]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences II,, Jahresber. DMV, 106 (2004), 51. Google Scholar

[8]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[9]

X. Lai, X. Chen, C. Qin and Y. Zhang, Existence, uniqueness, and stability of bubble solutions of a chemotaxis model,, preprint., (). Google Scholar

[10]

A. B. Potapov and T. Hillen, Metastability in chemotaxis models,, J. of Dynamics and Diff. Eqs., 17 (2005), 293. doi: 10.1007/s10884-005-2938-3. Google Scholar

[11]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. Amer. Math. Soc., 292 (1985), 531. doi: 10.1090/S0002-9947-1985-0808736-1. Google Scholar

[12]

B. Sleeman, M. Ward and J. Wei, The existence, stability, and dynamics of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790. doi: 10.1137/S0036139902415117. Google Scholar

[13]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem,, J. Math. Biol., 66 (2013), 1241. doi: 10.1007/s00285-012-0533-x. Google Scholar

[1]

Tian Xiang. A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2457-2485. doi: 10.3934/dcdsb.2013.18.2457

[2]

Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic & Related Models, 2017, 10 (1) : 313-327. doi: 10.3934/krm.2017013

[3]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[4]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[5]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[6]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[7]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[8]

Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541

[9]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[10]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[11]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[12]

Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823

[13]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[14]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[15]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[16]

Francesca Romana Guarguaglini, Corrado Mascia, Roberto Natalini, Magali Ribot. Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 39-76. doi: 10.3934/dcdsb.2009.12.39

[17]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[18]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[19]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[20]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]