September  2015, 20(7): 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion

1. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710072, China

Received  September 2014 Revised  March 2015 Published  July 2015

This paper investigates the stochastic averaging of slow-fast dynamical systems driven by fractional Brownian motion with the Hurst parameter $H$ in the interval $(\frac{1}{2},1)$. We establish an averaging principle by which the obtained simplified systems (the so-called averaged systems) will be applied to replace the original systems approximately through their solutions. Here, the solutions to averaged equations of slow variables which are unrelated to fast variables can converge to the solutions of slow variables to the original slow-fast dynamical systems in the sense of mean square. Therefore, the dimension reduction is realized since the solutions of uncoupled averaged equations can substitute that of coupled equations of the original slow-fast dynamical systems, namely, the asymptotic solutions dynamics will be obtained by the proposed stochastic averaging approach.
Citation: Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257
References:
[1]

E. Alos and D. Nualart, Stochastic integration with respect to the fractional Brownian motion,, Stochastics and Stochastic Reports, 75 (2003), 129. doi: 10.1080/1045112031000078917. Google Scholar

[2]

R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance,, J. Phys. A, 14 (1981). doi: 10.1088/0305-4470/14/11/006. Google Scholar

[3]

N. Berglund and B. Gentz, The effect of additive noise on dynamical hysteresis,, Nonlinearity, 15 (2002), 605. doi: 10.1088/0951-7715/15/3/305. Google Scholar

[4]

N. Berglund, B. Gentz and C. Kuehn, Hunting french ducks in a noisy environment,, J. Differential Equations, 252 (2012), 4786. doi: 10.1016/j.jde.2012.01.015. Google Scholar

[5]

F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications,, Springer-Verlag, (2008). doi: 10.1007/978-1-84628-797-8. Google Scholar

[6]

P. Braza and T. Erneux, Singular Hopf bifurcation to unstable periodic solutions in an NMR laser,, Physical Review A, 40 (1989). doi: 10.1103/PhysRevA.40.2539. Google Scholar

[7]

N. Chakravarti and K. L. Sebastian, Fractional Brownian motion models for ploymers,, Chemical Physics Letter., 267 (1997), 9. Google Scholar

[8]

W. Dai and C. C. Heyde, Itô formula with respect to fractional Brownian motion and its application,, Journal of Appl. Math. and Stoch. Anal., 9 (1996), 439. doi: 10.1155/S104895339600038X. Google Scholar

[9]

J. Dubbeldam and B. Krauskopf, Self-pulsations in lasers with saturable absorber: Dynamics and bifurcations,, Opt. Commun., 159 (1999), 325. doi: 10.1016/S0030-4018(98)00568-9. Google Scholar

[10]

T. Erneux and P. Mandel, Bifurcation phenomena in a laser with a saturable absorber,, Z. Phys. B., 44 (1981), 365. doi: 10.1007/BF01294174. Google Scholar

[11]

O. Filatov, Averaging of systems of differential inclusions with slow and fast variables,, Differential Equations, 44 (2008), 349. doi: 10.1134/S0012266108030063. Google Scholar

[12]

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems,, Springer, (1998). doi: 10.1007/978-1-4612-0611-8. Google Scholar

[13]

P. Hitczenkoa and G. Medvedev, Bursting oscillations induced by small noise,, SIAM J. Appl. Math., 69 (2009), 1359. doi: 10.1137/070711803. Google Scholar

[14]

Y. Hu and B. Øksendal, Fractional white noise calculus and application to finance,, Infin. Dimens. Anal. Quantum Probab. Relat. Topics, 6 (2003), 1. doi: 10.1142/S0219025703001110. Google Scholar

[15]

R. Z. Khasminskii, A limit theorem for the solution of differential equations with random right-hand sides,, Theory Probab. Appl., 11 (1966), 390. doi: 10.1137/1111038. Google Scholar

[16]

R. Z. Khasminskii, On the averaging principle for stochastic differential Ito equations,, Kybernetika, 4 (1968), 260. Google Scholar

[17]

R. Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter,, Theor. Probab. Appl., 11 (1966), 211. Google Scholar

[18]

A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen,, Raum, 26 (1940), 115. Google Scholar

[19]

M. Koper, Bifurcations of mixed-mode oscillations in a threevariable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram,, Physica D, 80 (1995), 72. doi: 10.1016/0167-2789(95)90061-6. Google Scholar

[20]

V. Kolomiets and A. Mel'nikov, Averaging of stochastic systems of integral-differential equations with "Poisson noise",, Ukr. Math. J, 43 (1991), 242. doi: 10.1007/BF01060515. Google Scholar

[21]

B. Krauskopf, H. Osinga, J. Galán-Vioque, et al., Mixed-mode Oscillations in a Three Time-Scale Model for the Dopaminergic Neuron,, Canopus Publishing Limited, (2007). Google Scholar

[22]

M. Krupa, N. Popovic, N. Kopell and H. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron,, Chaos, 18 (2008). doi: 10.1063/1.2779859. Google Scholar

[23]

R. Larter, C. Steinmetz and B. Aguda, Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction,, J. Chem. Phys., 89 (1988), 6506. doi: 10.1063/1.455370. Google Scholar

[24]

W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, On the self-similar nature of ethernet traffic,, IEEE/ACM Trans. Networking., 2 (1994), 1. Google Scholar

[25]

R. Liptser and V. Spokoiny, On Estimating a Dynamic Function of a Stochastic System with Averaging,, Statistical Inference for Stochastic Processes, 3 (2000), 225. doi: 10.1023/A:1009983802178. Google Scholar

[26]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications,, SIAM Review, 10 (1968), 422. doi: 10.1137/1010093. Google Scholar

[27]

B. McNamara and K. Wiesenfeld, Theory of stochastic resonance,, Physical Review A, 39 (1989), 4854. doi: 10.1103/PhysRevA.39.4854. Google Scholar

[28]

Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes,, Springer-Verlag, (2008). doi: 10.1007/978-3-540-75873-0. Google Scholar

[29]

N. Sri. Namachchivaya and Y. K. Lin, Application of stochastic averaging for systems with high damping,, Probab. Eng. Mech., 3 (1988), 185. Google Scholar

[30]

I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytivcal resuls on fractional Brownian motion,, Bernoulli., 5 (1999), 571. doi: 10.2307/3318691. Google Scholar

[31]

D. Nualart and A. Rascanu, The Malliavin Calculus and Related Topics,, Prob. and Appl., (1995). doi: 10.1007/978-1-4757-2437-0. Google Scholar

[32]

J. Roberts and P. Spanos, Stochastic averaging: An approximate method of solving random vibration problems,, Int. J. Non-Linear Mech., 21 (1986), 111. doi: 10.1016/0020-7462(86)90025-9. Google Scholar

[33]

J. Rubin and M. Wechselberger, Giant squid-hidden canard: The 3D geometry of the Hodgkin-Huxley model,, Biol. Cyber, 97 (2007), 5. doi: 10.1007/s00422-007-0153-5. Google Scholar

[34]

I. Stoyanov and D. Bainov, The averaging method for a class of stochastic differential equations,, Ukr. Math. J., 26 (1974), 186. doi: 10.1007/BF01085718. Google Scholar

[35]

R. L. Stratonovich, Topics in the Theory of Random Noise,, Silverman Gordon and Breach Science Publishers, (1963). Google Scholar

[36]

J. Su, J. Rubin and D. Terman, Effects of noise on elliptic bursters,, Nonlinearity, 17 (2004), 133. doi: 10.1088/0951-7715/17/1/009. Google Scholar

[37]

J. Swift, P. Hohenberg and G. Ahlers, Stochastic Landau equation with time-dependent drift,, Physical Review A., 43 (1991), 6572. doi: 10.1103/PhysRevA.43.6572. Google Scholar

[38]

M. Torrent and M. San Miguel, Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter,, Physical Review A., 38 (1988), 245. doi: 10.1103/PhysRevA.38.245. Google Scholar

[39]

B. Van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Rev., 1 (1920), 754. Google Scholar

[40]

W. Wang and A. Roberts, Average and deviation for slow-fast stochastic partial differential equations,, Journal of Differential Equations, 253 (2012), 1265. doi: 10.1016/j.jde.2012.05.011. Google Scholar

[41]

Y. Xu, J. Duan and W. Xu, An averaging principle for stochastic dynamical systems with Levy noise,, Physica D., 240 (2011), 1395. doi: 10.1016/j.physd.2011.06.001. Google Scholar

[42]

Y. Xu, B. Pei and Y. Li, Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise,, Mathematical Methods in the Applied Sciences., 38 (2015), 2120. doi: 10.1002/mma.3208. Google Scholar

[43]

Y. Xu, R. Guo, D. Liu, H. Zhang and J. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion,, Discrete and Continuous Dynamical Systems B, 19 (2014), 1197. doi: 10.3934/dcdsb.2014.19.1197. Google Scholar

[44]

Y. Xu, B. Pei and Y. Li, An averaging principle for stochastic differential delay equations with fractional Brownian motion,, Abstract and Applied Analysis., (2014). doi: 10.1155/2014/479195. Google Scholar

show all references

References:
[1]

E. Alos and D. Nualart, Stochastic integration with respect to the fractional Brownian motion,, Stochastics and Stochastic Reports, 75 (2003), 129. doi: 10.1080/1045112031000078917. Google Scholar

[2]

R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance,, J. Phys. A, 14 (1981). doi: 10.1088/0305-4470/14/11/006. Google Scholar

[3]

N. Berglund and B. Gentz, The effect of additive noise on dynamical hysteresis,, Nonlinearity, 15 (2002), 605. doi: 10.1088/0951-7715/15/3/305. Google Scholar

[4]

N. Berglund, B. Gentz and C. Kuehn, Hunting french ducks in a noisy environment,, J. Differential Equations, 252 (2012), 4786. doi: 10.1016/j.jde.2012.01.015. Google Scholar

[5]

F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications,, Springer-Verlag, (2008). doi: 10.1007/978-1-84628-797-8. Google Scholar

[6]

P. Braza and T. Erneux, Singular Hopf bifurcation to unstable periodic solutions in an NMR laser,, Physical Review A, 40 (1989). doi: 10.1103/PhysRevA.40.2539. Google Scholar

[7]

N. Chakravarti and K. L. Sebastian, Fractional Brownian motion models for ploymers,, Chemical Physics Letter., 267 (1997), 9. Google Scholar

[8]

W. Dai and C. C. Heyde, Itô formula with respect to fractional Brownian motion and its application,, Journal of Appl. Math. and Stoch. Anal., 9 (1996), 439. doi: 10.1155/S104895339600038X. Google Scholar

[9]

J. Dubbeldam and B. Krauskopf, Self-pulsations in lasers with saturable absorber: Dynamics and bifurcations,, Opt. Commun., 159 (1999), 325. doi: 10.1016/S0030-4018(98)00568-9. Google Scholar

[10]

T. Erneux and P. Mandel, Bifurcation phenomena in a laser with a saturable absorber,, Z. Phys. B., 44 (1981), 365. doi: 10.1007/BF01294174. Google Scholar

[11]

O. Filatov, Averaging of systems of differential inclusions with slow and fast variables,, Differential Equations, 44 (2008), 349. doi: 10.1134/S0012266108030063. Google Scholar

[12]

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems,, Springer, (1998). doi: 10.1007/978-1-4612-0611-8. Google Scholar

[13]

P. Hitczenkoa and G. Medvedev, Bursting oscillations induced by small noise,, SIAM J. Appl. Math., 69 (2009), 1359. doi: 10.1137/070711803. Google Scholar

[14]

Y. Hu and B. Øksendal, Fractional white noise calculus and application to finance,, Infin. Dimens. Anal. Quantum Probab. Relat. Topics, 6 (2003), 1. doi: 10.1142/S0219025703001110. Google Scholar

[15]

R. Z. Khasminskii, A limit theorem for the solution of differential equations with random right-hand sides,, Theory Probab. Appl., 11 (1966), 390. doi: 10.1137/1111038. Google Scholar

[16]

R. Z. Khasminskii, On the averaging principle for stochastic differential Ito equations,, Kybernetika, 4 (1968), 260. Google Scholar

[17]

R. Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter,, Theor. Probab. Appl., 11 (1966), 211. Google Scholar

[18]

A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen,, Raum, 26 (1940), 115. Google Scholar

[19]

M. Koper, Bifurcations of mixed-mode oscillations in a threevariable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram,, Physica D, 80 (1995), 72. doi: 10.1016/0167-2789(95)90061-6. Google Scholar

[20]

V. Kolomiets and A. Mel'nikov, Averaging of stochastic systems of integral-differential equations with "Poisson noise",, Ukr. Math. J, 43 (1991), 242. doi: 10.1007/BF01060515. Google Scholar

[21]

B. Krauskopf, H. Osinga, J. Galán-Vioque, et al., Mixed-mode Oscillations in a Three Time-Scale Model for the Dopaminergic Neuron,, Canopus Publishing Limited, (2007). Google Scholar

[22]

M. Krupa, N. Popovic, N. Kopell and H. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron,, Chaos, 18 (2008). doi: 10.1063/1.2779859. Google Scholar

[23]

R. Larter, C. Steinmetz and B. Aguda, Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction,, J. Chem. Phys., 89 (1988), 6506. doi: 10.1063/1.455370. Google Scholar

[24]

W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, On the self-similar nature of ethernet traffic,, IEEE/ACM Trans. Networking., 2 (1994), 1. Google Scholar

[25]

R. Liptser and V. Spokoiny, On Estimating a Dynamic Function of a Stochastic System with Averaging,, Statistical Inference for Stochastic Processes, 3 (2000), 225. doi: 10.1023/A:1009983802178. Google Scholar

[26]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications,, SIAM Review, 10 (1968), 422. doi: 10.1137/1010093. Google Scholar

[27]

B. McNamara and K. Wiesenfeld, Theory of stochastic resonance,, Physical Review A, 39 (1989), 4854. doi: 10.1103/PhysRevA.39.4854. Google Scholar

[28]

Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes,, Springer-Verlag, (2008). doi: 10.1007/978-3-540-75873-0. Google Scholar

[29]

N. Sri. Namachchivaya and Y. K. Lin, Application of stochastic averaging for systems with high damping,, Probab. Eng. Mech., 3 (1988), 185. Google Scholar

[30]

I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytivcal resuls on fractional Brownian motion,, Bernoulli., 5 (1999), 571. doi: 10.2307/3318691. Google Scholar

[31]

D. Nualart and A. Rascanu, The Malliavin Calculus and Related Topics,, Prob. and Appl., (1995). doi: 10.1007/978-1-4757-2437-0. Google Scholar

[32]

J. Roberts and P. Spanos, Stochastic averaging: An approximate method of solving random vibration problems,, Int. J. Non-Linear Mech., 21 (1986), 111. doi: 10.1016/0020-7462(86)90025-9. Google Scholar

[33]

J. Rubin and M. Wechselberger, Giant squid-hidden canard: The 3D geometry of the Hodgkin-Huxley model,, Biol. Cyber, 97 (2007), 5. doi: 10.1007/s00422-007-0153-5. Google Scholar

[34]

I. Stoyanov and D. Bainov, The averaging method for a class of stochastic differential equations,, Ukr. Math. J., 26 (1974), 186. doi: 10.1007/BF01085718. Google Scholar

[35]

R. L. Stratonovich, Topics in the Theory of Random Noise,, Silverman Gordon and Breach Science Publishers, (1963). Google Scholar

[36]

J. Su, J. Rubin and D. Terman, Effects of noise on elliptic bursters,, Nonlinearity, 17 (2004), 133. doi: 10.1088/0951-7715/17/1/009. Google Scholar

[37]

J. Swift, P. Hohenberg and G. Ahlers, Stochastic Landau equation with time-dependent drift,, Physical Review A., 43 (1991), 6572. doi: 10.1103/PhysRevA.43.6572. Google Scholar

[38]

M. Torrent and M. San Miguel, Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter,, Physical Review A., 38 (1988), 245. doi: 10.1103/PhysRevA.38.245. Google Scholar

[39]

B. Van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Rev., 1 (1920), 754. Google Scholar

[40]

W. Wang and A. Roberts, Average and deviation for slow-fast stochastic partial differential equations,, Journal of Differential Equations, 253 (2012), 1265. doi: 10.1016/j.jde.2012.05.011. Google Scholar

[41]

Y. Xu, J. Duan and W. Xu, An averaging principle for stochastic dynamical systems with Levy noise,, Physica D., 240 (2011), 1395. doi: 10.1016/j.physd.2011.06.001. Google Scholar

[42]

Y. Xu, B. Pei and Y. Li, Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise,, Mathematical Methods in the Applied Sciences., 38 (2015), 2120. doi: 10.1002/mma.3208. Google Scholar

[43]

Y. Xu, R. Guo, D. Liu, H. Zhang and J. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion,, Discrete and Continuous Dynamical Systems B, 19 (2014), 1197. doi: 10.3934/dcdsb.2014.19.1197. Google Scholar

[44]

Y. Xu, B. Pei and Y. Li, An averaging principle for stochastic differential delay equations with fractional Brownian motion,, Abstract and Applied Analysis., (2014). doi: 10.1155/2014/479195. Google Scholar

[1]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[2]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[3]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[4]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[5]

S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463-475. doi: 10.3934/proc.2005.2005.463

[6]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[7]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[8]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[9]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019103

[10]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[11]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[12]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[13]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[14]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[15]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[16]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[17]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[18]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[19]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[20]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]