September  2015, 20(7): 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

2. 

School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China, China

Received  May 2014 Revised  February 2015 Published  July 2015

Using stochastic differential equations with Lévy jumps, this paper studies the effect of environmental stochasticity and random catastrophes on the permanence of Lotka-Volterra facultative systems. Under certain simple assumptions, we establish the sufficient conditions for weak permanence in the mean and extinction of the non-autonomous system, respectively. In particular, a necessary and sufficient condition for permanence and extinction of autonomous system with jump-diffusion are obtained. We generalize some former results under weaker assumptions. Finally, we discuss the biological implications of the main results.
Citation: Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069
References:
[1]

R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory,, Second edition, (2000). Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, Int. J. Pure Appl. Math., 11 (2004), 377. Google Scholar

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Anal., 74 (2011), 6601. doi: 10.1016/j.na.2011.06.043. Google Scholar

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise,, J. Math. Anal. Appl., 391 (2012), 363. doi: 10.1016/j.jmaa.2012.02.043. Google Scholar

[5]

H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay,, J. Math. Anal. Appl., 210 (1997), 279. doi: 10.1006/jmaa.1997.5403. Google Scholar

[6]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994). doi: 10.1137/1.9781611971262. Google Scholar

[7]

S. Cheng, Stochastic population systems,, Stoch. Anal. Appl., 27 (2009), 854. doi: 10.1080/07362990902844348. Google Scholar

[8]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations,, J. Differential Equations, 115 (1995), 173. doi: 10.1006/jdeq.1995.1011. Google Scholar

[9]

T. C. Gard, Persistence in stochastic food web models,, Bull. Math. Biol., 46 (1984), 357. doi: 10.1007/BF02462011. Google Scholar

[10]

T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Anal., 10 (1986), 1411. doi: 10.1016/0362-546X(86)90111-2. Google Scholar

[11]

M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations,, Academic Press, (1991). Google Scholar

[12]

B. S. Goh, Stability in models of mutualism,, Amer. Natur., 113 (1979), 261. doi: 10.1086/283384. Google Scholar

[13]

K. Gopalsamy, Global asymptotic stability in Volterra's population systems,, J. Math. Biol., 19 (1984), 157. doi: 10.1007/BF00277744. Google Scholar

[14]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics,, Kluwer Academic, (1992). doi: 10.1007/978-94-015-7920-9. Google Scholar

[15]

T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations,, J. Math. Biol., 24 (1986), 327. doi: 10.1007/BF00275641. Google Scholar

[16]

F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations,, Theoret. Population Biol., 14 (1978), 46. doi: 10.1016/0040-5809(78)90003-5. Google Scholar

[17]

F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters,, Theoret. Population Biol., 19 (1981), 1. doi: 10.1016/0040-5809(81)90032-0. Google Scholar

[18]

F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps,, J. Math. Biol., 36 (1997), 169. doi: 10.1007/s002850050096. Google Scholar

[19]

X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism,, J. Math. Anal. Appl., 215 (1997), 154. doi: 10.1006/jmaa.1997.5632. Google Scholar

[20]

C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation,, Discrete Contin. Dyn. Syst., 32 (2012), 867. doi: 10.3934/dcds.2012.32.867. Google Scholar

[21]

V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations,, Kluwer Academic, (1992). doi: 10.1007/978-94-015-8084-7. Google Scholar

[22]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[23]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems,, J. Differential Equations, 103 (1993), 221. doi: 10.1006/jdeq.1993.1048. Google Scholar

[24]

R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes,, Amer. Natur., 142 (1993), 911. Google Scholar

[25]

R. Lande, Genetics and demography in biological conservation,, Science, 241 (1988), 1455. Google Scholar

[26]

R. Sh. Lipster, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217. doi: 10.1080/17442508008833146. Google Scholar

[27]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations,, Discrete Contin. Dyn. Syst., 33 (2013), 2495. doi: 10.3934/dcds.2013.33.2495. Google Scholar

[28]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model,, J. Math. Anal. Appl., 402 (2013), 392. doi: 10.1016/j.jmaa.2012.11.043. Google Scholar

[29]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps,, Nonlinear Anal., 85 (2013), 204. doi: 10.1016/j.na.2013.02.018. Google Scholar

[30]

X. Mao, Stochastic Differential Equations and Applications,, Second edition, (2008). doi: 10.1533/9780857099402. Google Scholar

[31]

X. Mao, Stationary distribution of stochastic population systems,, Systems Control Lett., 60 (2011), 398. doi: 10.1016/j.sysconle.2011.02.013. Google Scholar

[32]

R. M. May, Stability and Complexity in Model Ecosystems,, Princeton University Press, (1974). Google Scholar

[33]

R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices,, Linear Algebra and Appl., 18 (1977), 175. doi: 10.1016/0024-3795(77)90073-8. Google Scholar

[34]

G. Poole and T. Boullion, A Survey on M-Matrices,, SIAM Rev., 16 (1974), 419. doi: 10.1137/1016079. Google Scholar

[35]

J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise,, Statist. Probab. Lett., 83 (2013), 655. doi: 10.1016/j.spl.2012.11.003. Google Scholar

show all references

References:
[1]

R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory,, Second edition, (2000). Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, Int. J. Pure Appl. Math., 11 (2004), 377. Google Scholar

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Anal., 74 (2011), 6601. doi: 10.1016/j.na.2011.06.043. Google Scholar

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise,, J. Math. Anal. Appl., 391 (2012), 363. doi: 10.1016/j.jmaa.2012.02.043. Google Scholar

[5]

H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay,, J. Math. Anal. Appl., 210 (1997), 279. doi: 10.1006/jmaa.1997.5403. Google Scholar

[6]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994). doi: 10.1137/1.9781611971262. Google Scholar

[7]

S. Cheng, Stochastic population systems,, Stoch. Anal. Appl., 27 (2009), 854. doi: 10.1080/07362990902844348. Google Scholar

[8]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations,, J. Differential Equations, 115 (1995), 173. doi: 10.1006/jdeq.1995.1011. Google Scholar

[9]

T. C. Gard, Persistence in stochastic food web models,, Bull. Math. Biol., 46 (1984), 357. doi: 10.1007/BF02462011. Google Scholar

[10]

T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Anal., 10 (1986), 1411. doi: 10.1016/0362-546X(86)90111-2. Google Scholar

[11]

M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations,, Academic Press, (1991). Google Scholar

[12]

B. S. Goh, Stability in models of mutualism,, Amer. Natur., 113 (1979), 261. doi: 10.1086/283384. Google Scholar

[13]

K. Gopalsamy, Global asymptotic stability in Volterra's population systems,, J. Math. Biol., 19 (1984), 157. doi: 10.1007/BF00277744. Google Scholar

[14]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics,, Kluwer Academic, (1992). doi: 10.1007/978-94-015-7920-9. Google Scholar

[15]

T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations,, J. Math. Biol., 24 (1986), 327. doi: 10.1007/BF00275641. Google Scholar

[16]

F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations,, Theoret. Population Biol., 14 (1978), 46. doi: 10.1016/0040-5809(78)90003-5. Google Scholar

[17]

F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters,, Theoret. Population Biol., 19 (1981), 1. doi: 10.1016/0040-5809(81)90032-0. Google Scholar

[18]

F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps,, J. Math. Biol., 36 (1997), 169. doi: 10.1007/s002850050096. Google Scholar

[19]

X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism,, J. Math. Anal. Appl., 215 (1997), 154. doi: 10.1006/jmaa.1997.5632. Google Scholar

[20]

C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation,, Discrete Contin. Dyn. Syst., 32 (2012), 867. doi: 10.3934/dcds.2012.32.867. Google Scholar

[21]

V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations,, Kluwer Academic, (1992). doi: 10.1007/978-94-015-8084-7. Google Scholar

[22]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[23]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems,, J. Differential Equations, 103 (1993), 221. doi: 10.1006/jdeq.1993.1048. Google Scholar

[24]

R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes,, Amer. Natur., 142 (1993), 911. Google Scholar

[25]

R. Lande, Genetics and demography in biological conservation,, Science, 241 (1988), 1455. Google Scholar

[26]

R. Sh. Lipster, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217. doi: 10.1080/17442508008833146. Google Scholar

[27]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations,, Discrete Contin. Dyn. Syst., 33 (2013), 2495. doi: 10.3934/dcds.2013.33.2495. Google Scholar

[28]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model,, J. Math. Anal. Appl., 402 (2013), 392. doi: 10.1016/j.jmaa.2012.11.043. Google Scholar

[29]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps,, Nonlinear Anal., 85 (2013), 204. doi: 10.1016/j.na.2013.02.018. Google Scholar

[30]

X. Mao, Stochastic Differential Equations and Applications,, Second edition, (2008). doi: 10.1533/9780857099402. Google Scholar

[31]

X. Mao, Stationary distribution of stochastic population systems,, Systems Control Lett., 60 (2011), 398. doi: 10.1016/j.sysconle.2011.02.013. Google Scholar

[32]

R. M. May, Stability and Complexity in Model Ecosystems,, Princeton University Press, (1974). Google Scholar

[33]

R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices,, Linear Algebra and Appl., 18 (1977), 175. doi: 10.1016/0024-3795(77)90073-8. Google Scholar

[34]

G. Poole and T. Boullion, A Survey on M-Matrices,, SIAM Rev., 16 (1974), 419. doi: 10.1137/1016079. Google Scholar

[35]

J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise,, Statist. Probab. Lett., 83 (2013), 655. doi: 10.1016/j.spl.2012.11.003. Google Scholar

[1]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[2]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[3]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[4]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[5]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[6]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[7]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[8]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[9]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[10]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

[11]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[12]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[13]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[14]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[15]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[16]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[17]

Hwa-Sung Kim, Bara Kim, Jerim Kim. Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps. Journal of Industrial & Management Optimization, 2014, 10 (1) : 41-55. doi: 10.3934/jimo.2014.10.41

[18]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200

[19]

Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719

[20]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]