January  2015, 20(1): 173-187. doi: 10.3934/dcdsb.2015.20.173

Spatial pattern of discrete and ultradiscrete Gray-Scott model

1. 

Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

2. 

Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei-shi, Tokyo 184-8588, Japan

Received  April 2013 Revised  December 2013 Published  November 2014

Ultradiscretization is a limiting procedure transforming a given difference equation into a cellular automaton. In addition the cellular automaton constructed by this procedure preserves the essential properties of the original equation, such as the structure of exact solutions for integrable equations. In this article, we propose a discretization and an ultradiscretization of Gray-Scott model which is not an integrable system and which gives various spatial patterns with appropriate initial data and parameters. The resulting systems give a traveling pulse and a self-replication pattern with appropriate initial data and parameters. The ultradiscrete system is directly related to the elementary cellular automaton Rule 90 which gives a Sierpinski gasket pattern. A $(2+1)$D ultradiscrete Gray-Scott model that gives a ring pattern and a self-replication pattern are also constructed.
Citation: Keisuke Matsuya, Mikio Murata. Spatial pattern of discrete and ultradiscrete Gray-Scott model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 173-187. doi: 10.3934/dcdsb.2015.20.173
References:
[1]

M. J. Ablowitz, J. M. Keiser and L. A. Takhtajan, Stable, multi-state, time-reversible cellular automata with rich particle content,, Quaestiones Math., 15 (1992), 325. doi: 10.1080/16073606.1992.9631695. Google Scholar

[2]

M. E. Alexander and S. M. Moghadas, $\mathcalO(l)$ shift in Hopf bifurcations for a class of non-standard numerical schemes,, in Proceedings of the 2004 Conference on Differential Equations and Applications in Mathematical Biology, (2004). Google Scholar

[3]

A. S. Fokas, E. Papadopoulou and Y. Saridakis, Soliton cellular automata,, Physica D, 41 (1990), 297. doi: 10.1016/0167-2789(90)90001-6. Google Scholar

[4]

A. S. Fokas, E. Papadopoulou, Y. Saridakis and M. J. Ablowitz, Interaction of simple particles in soliton cellular automata,, Stud. Appl. Math., 81 (1989), 153. Google Scholar

[5]

P. Gray and S. K. Scott, Sustained oscillations and other exotic patterns of behaviour in isothermal reactions,, J. Phys. Chem., 89 (1985), 22. doi: 10.1021/j100247a009. Google Scholar

[6]

W. Kunishima, A. Nishiyama, H. Tanaka and T. Tokihiro, Differential equations for creating complex cellular automaton patterns,, J. Phys. Soc. Japan, 73 (2004), 2033. doi: 10.1143/JPSJ.73.2033. Google Scholar

[7]

J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii, Toda-type cellular automaton and its N-soliton solution,, Phys. Lett. A, 225 (1997), 287. doi: 10.1016/S0375-9601(96)00899-7. Google Scholar

[8]

W. Mazin, K. E. Rasmussen, E. Mosekilde, P. Borckmans and G. Dewel, Pattern formation in the bistable Gray-Scott model,, Math. Comput. Simul., 40 (1996), 371. doi: 10.1016/0378-4754(95)00044-5. Google Scholar

[9]

M. Murata, Exact solutions with two parameters for an ultradiscrete Painlevé equation of type $A_6^{(1)}$,, SIGMA, 7 (2011). Google Scholar

[10]

M. Murata, Tropical discretization: Ultradiscrete Fisher-KPP equation and ultradiscrete Allen-Cahn equation,, J. Difference. Equ. Appl., 19 (2013), 1008. doi: 10.1080/10236198.2012.705834. Google Scholar

[11]

M. Murata, S. Isojima, A. Nobe and J. Satsuma, Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box-ball systems,, J. Phys. A Math. Gen., 39 (2006). doi: 10.1088/0305-4470/39/1/L04. Google Scholar

[12]

M. Murata, J. Satsuma, A. Ramani and B. Grammaticos, How to discretize differential systems in a systematic way,, J. Phys. A: Math. Theor., 43 (2010). doi: 10.1088/1751-8113/43/31/315203. Google Scholar

[13]

A. Nagai, D. Takahashi and T. Tokihiro, Soliton cellular automaton, toda molecule equation and sorting algorithm,, Phys. Lett. A, 255 (1999), 265. doi: 10.1016/S0375-9601(99)00162-0. Google Scholar

[14]

Y. Nishiura and D. Ueyama, A skeleton structure of self-replicating dynamics,, Physica D, 130 (1999), 73. doi: 10.1016/S0167-2789(99)00010-X. Google Scholar

[15]

Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model,, Physica D, 150 (2001), 137. doi: 10.1016/S0167-2789(00)00214-1. Google Scholar

[16]

J. K. Park, K. Steiglitz and W. P. Thurston, Soliton-like behavior in automata,, Physica D, 19 (1986), 423. doi: 10.1016/0167-2789(86)90068-0. Google Scholar

[17]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189. doi: 10.1126/science.261.5118.189. Google Scholar

[18]

D. Takahashi and J. Satsuma, A soliton cellular automaton,, J. Phys. Soc. Japan, 59 (1990), 3514. doi: 10.1143/JPSJ.59.3514. Google Scholar

[19]

D. Takahashi, A. Shida and M. Usami, On the pattern formation mechanism of (2+1)D max-plus models,, J. Phys. A: Math. Gen., 34 (2001), 10715. doi: 10.1088/0305-4470/34/48/333. Google Scholar

[20]

H. Tanaka, A. Nakajima, A. Nishiyama and T. Tokihiro, Derivation of a differential equation exhibiting replicative time-evolution patterns by inverse ultra-discretization,, J. Phys. Soc. Japan, 78 (2009). doi: 10.1143/JPSJ.78.034002. Google Scholar

[21]

T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure,, Phys. Rev. Lett., 76 (1996), 3247. doi: 10.1103/PhysRevLett.76.3247. Google Scholar

[22]

S. Wolfram, Twenty Problems in the Theory of Cellular Automata,, Physica Scripta., T9 (1985), 170. doi: 10.1088/0031-8949/1985/T9/029. Google Scholar

show all references

References:
[1]

M. J. Ablowitz, J. M. Keiser and L. A. Takhtajan, Stable, multi-state, time-reversible cellular automata with rich particle content,, Quaestiones Math., 15 (1992), 325. doi: 10.1080/16073606.1992.9631695. Google Scholar

[2]

M. E. Alexander and S. M. Moghadas, $\mathcalO(l)$ shift in Hopf bifurcations for a class of non-standard numerical schemes,, in Proceedings of the 2004 Conference on Differential Equations and Applications in Mathematical Biology, (2004). Google Scholar

[3]

A. S. Fokas, E. Papadopoulou and Y. Saridakis, Soliton cellular automata,, Physica D, 41 (1990), 297. doi: 10.1016/0167-2789(90)90001-6. Google Scholar

[4]

A. S. Fokas, E. Papadopoulou, Y. Saridakis and M. J. Ablowitz, Interaction of simple particles in soliton cellular automata,, Stud. Appl. Math., 81 (1989), 153. Google Scholar

[5]

P. Gray and S. K. Scott, Sustained oscillations and other exotic patterns of behaviour in isothermal reactions,, J. Phys. Chem., 89 (1985), 22. doi: 10.1021/j100247a009. Google Scholar

[6]

W. Kunishima, A. Nishiyama, H. Tanaka and T. Tokihiro, Differential equations for creating complex cellular automaton patterns,, J. Phys. Soc. Japan, 73 (2004), 2033. doi: 10.1143/JPSJ.73.2033. Google Scholar

[7]

J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii, Toda-type cellular automaton and its N-soliton solution,, Phys. Lett. A, 225 (1997), 287. doi: 10.1016/S0375-9601(96)00899-7. Google Scholar

[8]

W. Mazin, K. E. Rasmussen, E. Mosekilde, P. Borckmans and G. Dewel, Pattern formation in the bistable Gray-Scott model,, Math. Comput. Simul., 40 (1996), 371. doi: 10.1016/0378-4754(95)00044-5. Google Scholar

[9]

M. Murata, Exact solutions with two parameters for an ultradiscrete Painlevé equation of type $A_6^{(1)}$,, SIGMA, 7 (2011). Google Scholar

[10]

M. Murata, Tropical discretization: Ultradiscrete Fisher-KPP equation and ultradiscrete Allen-Cahn equation,, J. Difference. Equ. Appl., 19 (2013), 1008. doi: 10.1080/10236198.2012.705834. Google Scholar

[11]

M. Murata, S. Isojima, A. Nobe and J. Satsuma, Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box-ball systems,, J. Phys. A Math. Gen., 39 (2006). doi: 10.1088/0305-4470/39/1/L04. Google Scholar

[12]

M. Murata, J. Satsuma, A. Ramani and B. Grammaticos, How to discretize differential systems in a systematic way,, J. Phys. A: Math. Theor., 43 (2010). doi: 10.1088/1751-8113/43/31/315203. Google Scholar

[13]

A. Nagai, D. Takahashi and T. Tokihiro, Soliton cellular automaton, toda molecule equation and sorting algorithm,, Phys. Lett. A, 255 (1999), 265. doi: 10.1016/S0375-9601(99)00162-0. Google Scholar

[14]

Y. Nishiura and D. Ueyama, A skeleton structure of self-replicating dynamics,, Physica D, 130 (1999), 73. doi: 10.1016/S0167-2789(99)00010-X. Google Scholar

[15]

Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model,, Physica D, 150 (2001), 137. doi: 10.1016/S0167-2789(00)00214-1. Google Scholar

[16]

J. K. Park, K. Steiglitz and W. P. Thurston, Soliton-like behavior in automata,, Physica D, 19 (1986), 423. doi: 10.1016/0167-2789(86)90068-0. Google Scholar

[17]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189. doi: 10.1126/science.261.5118.189. Google Scholar

[18]

D. Takahashi and J. Satsuma, A soliton cellular automaton,, J. Phys. Soc. Japan, 59 (1990), 3514. doi: 10.1143/JPSJ.59.3514. Google Scholar

[19]

D. Takahashi, A. Shida and M. Usami, On the pattern formation mechanism of (2+1)D max-plus models,, J. Phys. A: Math. Gen., 34 (2001), 10715. doi: 10.1088/0305-4470/34/48/333. Google Scholar

[20]

H. Tanaka, A. Nakajima, A. Nishiyama and T. Tokihiro, Derivation of a differential equation exhibiting replicative time-evolution patterns by inverse ultra-discretization,, J. Phys. Soc. Japan, 78 (2009). doi: 10.1143/JPSJ.78.034002. Google Scholar

[21]

T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure,, Phys. Rev. Lett., 76 (1996), 3247. doi: 10.1103/PhysRevLett.76.3247. Google Scholar

[22]

S. Wolfram, Twenty Problems in the Theory of Cellular Automata,, Physica Scripta., T9 (1985), 170. doi: 10.1088/0031-8949/1985/T9/029. Google Scholar

[1]

Yuncheng You. Dynamics of three-component reversible Gray-Scott model. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1671-1688. doi: 10.3934/dcdsb.2010.14.1671

[2]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[3]

Gaocheng Yue, Chengkui Zhong. Global attractors for the Gray-Scott equations in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 337-356. doi: 10.3934/dcdsb.2016.21.337

[4]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[5]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[6]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[7]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[8]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[9]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[10]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[11]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[12]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[13]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[14]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[15]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[16]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[17]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[18]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[19]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[20]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]