July  2015, 20(5): 1573-1582. doi: 10.3934/dcdsb.2015.20.1573

Global behaviour of a delayed viral kinetic model with general incidence rate

1. 

Department of Mathematics, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China

2. 

Department of Mathematics, Harbin Institute of Technology(Weihai), Weihai, Shandong, 264209, China

Received  June 2014 Revised  October 2014 Published  May 2015

This paper aims to show the global behaviour of a viral kinetic model with two time delays and general incidence rate. For the basic reproduction number $R_{0}<1$, the disease-free equilibrium is shown to be globally asymptotically stable by constructing Lyapunov functional and using LaSalle invariance principle. For the basic reproduction number $R_{0}>1$, the interior equilibrium of model exists and is also globally asymptotically stable. Our work show more general conclusion than other known papers on delayed viral models.
Citation: Hong Yang, Junjie Wei. Global behaviour of a delayed viral kinetic model with general incidence rate. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1573-1582. doi: 10.3934/dcdsb.2015.20.1573
References:
[1]

E. Beretta and Y. Kuang, Geometric stability switches criteria in delay differential systems with delay dependent parameters,, Siam. J. Math. Anal., 33 (2002), 1144. doi: 10.1137/S0036141000376086. Google Scholar

[2]

K. Hattaf, N. Yousfi and A. Tridane, A delay virus dynamics model with general incidence rate,, Differ. Equ. Dyn. Syst., 22 (2014), 181. doi: 10.1007/s12591-013-0167-5. Google Scholar

[3]

S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth,, Mathematical Biology, 60 (2010), 573. doi: 10.1007/s00285-009-0278-3. Google Scholar

[4]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001. Google Scholar

[5]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[6]

J. P. LaSalle, The Stability of Dynamical Systems,, Regional Conference Series in Applied Mathematics, (1976). Google Scholar

[7]

D. Li and W. Ma, Asymptotic properties of a HIV-1 infection model with time delay,, Journal of Mathematical Analysis and Applications, 335 (2007), 683. doi: 10.1016/j.jmaa.2007.02.006. Google Scholar

[8]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bulletin of Mathematical Biology, 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x. Google Scholar

[9]

Y. Nakata, Global dynamics of a viral infection model with a latent period and Beddington-DeAngelis response,, Nonlinear Analysis, 74 (2011), 2929. doi: 10.1016/j.na.2010.12.030. Google Scholar

[10]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74. Google Scholar

[11]

A. S. Perelson, D. E. Kirschner and R. D. Boer, Dynamics of HIV infection of CD$4^+$ T-cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A. Google Scholar

[12]

Y. Qu and J. Wei, Bifurcation analysis in a predator-prey system with stage-structure and harvesting,, Journal of Franklin Institute, 347 (2010), 1097. doi: 10.1016/j.jfranklin.2010.03.017. Google Scholar

[13]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dynamics of Continuous, 10 (2003), 863. Google Scholar

[14]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). Google Scholar

[15]

Y. Song, Y. Peng and J. Wei, Bifurcations for a predator-prey system with two delays,, J. Math. Anal. Appl., 337 (2008), 466. doi: 10.1016/j.jmaa.2007.04.001. Google Scholar

[16]

J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera,, Discrete and Continuous Systems, (2013), 747. Google Scholar

[17]

J. P. Tian and J. Wang, Global stability for cholera epidemic models,, Mathematical Bio-sciences, 232 (2011), 31. doi: 10.1016/j.mbs.2011.04.001. Google Scholar

[18]

J. Wei and S. Ruan, Stability and bifurcation in a neural network model with two delays,, Physica D: Nonlinear Phenomena, 130 (1999), 255. doi: 10.1016/S0167-2789(99)00009-3. Google Scholar

[19]

J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays,, Physica D, 198 (2004), 106. doi: 10.1016/j.physd.2004.08.023. Google Scholar

show all references

References:
[1]

E. Beretta and Y. Kuang, Geometric stability switches criteria in delay differential systems with delay dependent parameters,, Siam. J. Math. Anal., 33 (2002), 1144. doi: 10.1137/S0036141000376086. Google Scholar

[2]

K. Hattaf, N. Yousfi and A. Tridane, A delay virus dynamics model with general incidence rate,, Differ. Equ. Dyn. Syst., 22 (2014), 181. doi: 10.1007/s12591-013-0167-5. Google Scholar

[3]

S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth,, Mathematical Biology, 60 (2010), 573. doi: 10.1007/s00285-009-0278-3. Google Scholar

[4]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001. Google Scholar

[5]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[6]

J. P. LaSalle, The Stability of Dynamical Systems,, Regional Conference Series in Applied Mathematics, (1976). Google Scholar

[7]

D. Li and W. Ma, Asymptotic properties of a HIV-1 infection model with time delay,, Journal of Mathematical Analysis and Applications, 335 (2007), 683. doi: 10.1016/j.jmaa.2007.02.006. Google Scholar

[8]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bulletin of Mathematical Biology, 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x. Google Scholar

[9]

Y. Nakata, Global dynamics of a viral infection model with a latent period and Beddington-DeAngelis response,, Nonlinear Analysis, 74 (2011), 2929. doi: 10.1016/j.na.2010.12.030. Google Scholar

[10]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74. Google Scholar

[11]

A. S. Perelson, D. E. Kirschner and R. D. Boer, Dynamics of HIV infection of CD$4^+$ T-cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A. Google Scholar

[12]

Y. Qu and J. Wei, Bifurcation analysis in a predator-prey system with stage-structure and harvesting,, Journal of Franklin Institute, 347 (2010), 1097. doi: 10.1016/j.jfranklin.2010.03.017. Google Scholar

[13]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dynamics of Continuous, 10 (2003), 863. Google Scholar

[14]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). Google Scholar

[15]

Y. Song, Y. Peng and J. Wei, Bifurcations for a predator-prey system with two delays,, J. Math. Anal. Appl., 337 (2008), 466. doi: 10.1016/j.jmaa.2007.04.001. Google Scholar

[16]

J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera,, Discrete and Continuous Systems, (2013), 747. Google Scholar

[17]

J. P. Tian and J. Wang, Global stability for cholera epidemic models,, Mathematical Bio-sciences, 232 (2011), 31. doi: 10.1016/j.mbs.2011.04.001. Google Scholar

[18]

J. Wei and S. Ruan, Stability and bifurcation in a neural network model with two delays,, Physica D: Nonlinear Phenomena, 130 (1999), 255. doi: 10.1016/S0167-2789(99)00009-3. Google Scholar

[19]

J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays,, Physica D, 198 (2004), 106. doi: 10.1016/j.physd.2004.08.023. Google Scholar

[1]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[2]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[3]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[4]

Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401

[5]

Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005

[6]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[7]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[8]

Huiyan Zhu, Xingfu Zou. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 511-524. doi: 10.3934/dcdsb.2009.12.511

[9]

Lianwen Wang, Zhijun Liu, Yong Li, Dashun Xu. Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019196

[10]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[11]

Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185

[12]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

[13]

Kaifa Wang, Yu Jin, Aijun Fan. The effect of immune responses in viral infections: A mathematical model view. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3379-3396. doi: 10.3934/dcdsb.2014.19.3379

[14]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[15]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[16]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[17]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[18]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[19]

Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863

[20]

Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]