# American Institute of Mathematical Sciences

July  2015, 20(5): 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

## Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems

 1 School of Mathematics and Statistics, and Key Laboratory of Applied Mathematics and Complex Systems in Gansu Province, Lanzhou University, Lanzhou 730000, China 2 Beijing Computational Science Research Center, Beijing 100094, China

Received  February 2014 Revised  January 2015 Published  May 2015

A polynomial preserving recovery technique is applied to an over-penalized symmetric interior penalty method. The discontinuous Galerkin solution values are used to recover the gradient and to further construct an a posteriori error estimator in the energy norm. In addition, for uniform triangular meshes and mildly structured meshes satisfying the $\epsilon$-$\sigma$ condition, the method for the linear element is superconvergent under the regular pattern and under the chevron pattern, while it is superconvergent for the quadratic element under the regular pattern.
Citation: Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405
##### References:
 [1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis,, Wiley Interscience, (2000). doi: 10.1002/9781118032824. Google Scholar [2] D. N. Arnold, An interior penalty finite element method with discontinuous elements,, SIAM J. Numer. Anal., 19 (1982), 742. doi: 10.1137/0719052. Google Scholar [3] I. Babuška and W. C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element Method,, Internat. J. Numer. Methods Engrg., 12 (1978), 1597. doi: 10.1002/nme.1620121010. Google Scholar [4] I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability,, Oxford University Press, (2001). Google Scholar [5] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations,, Math. Comp., 44 (1985), 283. doi: 10.1090/S0025-5718-1985-0777265-X. Google Scholar [6] C. Brenner, L. Owens and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method,, Electron. Trans. Numer. Anal., 30 (2008), 107. Google Scholar [7] S. C. Brenner, T. Gudi and L.-Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method,, J. Sci. Comput., 40 (2009), 37. doi: 10.1007/s10915-009-9278-0. Google Scholar [8] E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations,, Math. Comp., 76 (2007), 1119. doi: 10.1090/S0025-5718-07-01951-5. Google Scholar [9] P. G. Ciarlet, Basic error estimates for elliptic problems,, in Handbook of Numerical Analysis, (1991), 17. Google Scholar [10] Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods,, J. Comput. Appl. Math., 206 (2007), 843. doi: 10.1016/j.cam.2006.08.029. Google Scholar [11] P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monogr. Stud. Math. 24, (1985). Google Scholar [12] Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids,, Math. Comp., 77 (2008), 1253. doi: 10.1090/S0025-5718-08-02051-6. Google Scholar [13] A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D,, Discrete Continuous Dynam. Systems - B, 5 (2005), 769. doi: 10.3934/dcdsb.2005.5.769. Google Scholar [14] P. Oswald, On a BPX-preconditioner for $P1$ elements,, Computing, 51 (1993), 125. doi: 10.1007/BF02243847. Google Scholar [15] P. O. Persson and G. Strang, A simple mesh generator in Matlab,, SIAM Rev., 46 (2004), 329. doi: 10.1137/S0036144503429121. Google Scholar [16] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation,, SIAM, (2008). doi: 10.1137/1.9780898717440. Google Scholar [17] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties,, SIAM J. Numer. Anal., 15 (1978), 152. doi: 10.1137/0715010. Google Scholar [18] Z. Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals,, Int. J. Num. Anal. Model., 1 (2004), 1. Google Scholar [19] Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property,, SIAM J. Sci. Comput., 26 (2005), 1192. doi: 10.1137/S1064827503402837. Google Scholar [20] Z. Zhang and A. Naga, A posteriori error estimates based on polynomial preserving recovery,, SIAM J. Numer. Anal., 42 (2004), 1780. doi: 10.1137/S0036142903413002. Google Scholar [21] Z. Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio,, Numer. Methods Partial Differential Equations, 24 (2008), 960. doi: 10.1002/num.20300. Google Scholar [22] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis,, Internat. J. Numer. Methods Engrg., 24 (1987), 337. doi: 10.1002/nme.1620240206. Google Scholar [23] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique,, Internat. J. Numer. Methods Engrg., 33 (1992), 1331. doi: 10.1002/nme.1620330702. Google Scholar [24] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids,, Math. Comp., 73 (2004), 1139. doi: 10.1090/S0025-5718-03-01600-4. Google Scholar

show all references

##### References:
 [1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis,, Wiley Interscience, (2000). doi: 10.1002/9781118032824. Google Scholar [2] D. N. Arnold, An interior penalty finite element method with discontinuous elements,, SIAM J. Numer. Anal., 19 (1982), 742. doi: 10.1137/0719052. Google Scholar [3] I. Babuška and W. C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element Method,, Internat. J. Numer. Methods Engrg., 12 (1978), 1597. doi: 10.1002/nme.1620121010. Google Scholar [4] I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability,, Oxford University Press, (2001). Google Scholar [5] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations,, Math. Comp., 44 (1985), 283. doi: 10.1090/S0025-5718-1985-0777265-X. Google Scholar [6] C. Brenner, L. Owens and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method,, Electron. Trans. Numer. Anal., 30 (2008), 107. Google Scholar [7] S. C. Brenner, T. Gudi and L.-Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method,, J. Sci. Comput., 40 (2009), 37. doi: 10.1007/s10915-009-9278-0. Google Scholar [8] E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations,, Math. Comp., 76 (2007), 1119. doi: 10.1090/S0025-5718-07-01951-5. Google Scholar [9] P. G. Ciarlet, Basic error estimates for elliptic problems,, in Handbook of Numerical Analysis, (1991), 17. Google Scholar [10] Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods,, J. Comput. Appl. Math., 206 (2007), 843. doi: 10.1016/j.cam.2006.08.029. Google Scholar [11] P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monogr. Stud. Math. 24, (1985). Google Scholar [12] Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids,, Math. Comp., 77 (2008), 1253. doi: 10.1090/S0025-5718-08-02051-6. Google Scholar [13] A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D,, Discrete Continuous Dynam. Systems - B, 5 (2005), 769. doi: 10.3934/dcdsb.2005.5.769. Google Scholar [14] P. Oswald, On a BPX-preconditioner for $P1$ elements,, Computing, 51 (1993), 125. doi: 10.1007/BF02243847. Google Scholar [15] P. O. Persson and G. Strang, A simple mesh generator in Matlab,, SIAM Rev., 46 (2004), 329. doi: 10.1137/S0036144503429121. Google Scholar [16] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation,, SIAM, (2008). doi: 10.1137/1.9780898717440. Google Scholar [17] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties,, SIAM J. Numer. Anal., 15 (1978), 152. doi: 10.1137/0715010. Google Scholar [18] Z. Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals,, Int. J. Num. Anal. Model., 1 (2004), 1. Google Scholar [19] Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property,, SIAM J. Sci. Comput., 26 (2005), 1192. doi: 10.1137/S1064827503402837. Google Scholar [20] Z. Zhang and A. Naga, A posteriori error estimates based on polynomial preserving recovery,, SIAM J. Numer. Anal., 42 (2004), 1780. doi: 10.1137/S0036142903413002. Google Scholar [21] Z. Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio,, Numer. Methods Partial Differential Equations, 24 (2008), 960. doi: 10.1002/num.20300. Google Scholar [22] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis,, Internat. J. Numer. Methods Engrg., 24 (1987), 337. doi: 10.1002/nme.1620240206. Google Scholar [23] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique,, Internat. J. Numer. Methods Engrg., 33 (1992), 1331. doi: 10.1002/nme.1620330702. Google Scholar [24] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids,, Math. Comp., 73 (2004), 1139. doi: 10.1090/S0025-5718-03-01600-4. Google Scholar
 [1] Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 [2] JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305 [3] H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175 [4] Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133 [5] Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001 [6] Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104 [7] Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473 [8] Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 [9] Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949 [10] Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006 [11] Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 [12] Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957 [13] Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719 [14] Yanqing Liu, Jiyuan Tao, Huan Zhang, Xianchao Xiu, Lingchen Kong. Fused LASSO penalized least absolute deviation estimator for high dimensional linear regression. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 97-117. doi: 10.3934/naco.2018006 [15] Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15 [16] Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377 [17] M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525 [18] Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435 [19] Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037 [20] Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070

2018 Impact Factor: 1.008