May  2014, 19(3): 747-760. doi: 10.3934/dcdsb.2014.19.747

Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model

1. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada, Canada, Canada

Received  September 2013 Revised  November 2013 Published  February 2014

In recent studies, global Hopf branches were investigated for delayed model of HTLV-I infection with delay-independent parameters. It is shown in [8,9] that when stability switches occur, global Hopf branches tend to be bounded, and different branches can overlap to produce coexistence of stable periodic solutions. In this paper, we investigate global Hopf branches for delayed systems with delay-dependent parameters. Using a delayed predator-prey model as an example, we demonstrate that stability switches caused by varying the time delay are accompanied by bounded global Hopf branches. When multiple Hopf branches exist, they are nested and the overlap produces coexistence of two or possibly more stable limit cycles.
Citation: Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747
References:
[1]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144. doi: 10.1137/S0036141000376086. Google Scholar

[2]

K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00, A MATLAB Package for Bifurcation Analysis of Delay Differential Equations,, Tech. rep., (2001). Google Scholar

[3]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). Google Scholar

[4]

X. Z. He, Stability and delays in a predator-prey system,, J. Math. Anal. Appl., 198 (1996), 355. doi: 10.1006/jmaa.1996.0087. Google Scholar

[5]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[6]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory,, 2nd ed., (1998). Google Scholar

[7]

J. P. LaSalle, The Stability of Dynamical Systems,, Reg. Conf. Ser. Appl. Math., (1976). Google Scholar

[8]

M. Y. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection,, Bull. Math. Bio., 73 (2011), 1774. doi: 10.1007/s11538-010-9591-7. Google Scholar

[9]

M. Y. Li, X. Lin and H. Wang, Global Hopf branches of a delayed HTLV-1 infection model: Coexistence of multiple attracting limit cycles,, Canadian Appl. Math. Quarterly, 20 (2012), 39. Google Scholar

[10]

R. M. May, Time delays versus stability in population models with two or three trophic levels,, Ecology, 54 (1973), 315. doi: 10.2307/1934339. Google Scholar

[11]

H. Shu, L, Wang and J. Wu, Global dynamics of Nicholson's blow y equation revisited: Onset and termination of nonlinear oscillations,, Journal of Differential Equations, 255 (2013), 2565. doi: 10.1016/j.jde.2013.06.020. Google Scholar

[12]

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system,, J. Math. Anal. Appl., 301 (2005), 1. doi: 10.1016/j.jmaa.2004.06.056. Google Scholar

[13]

H. Wang, J. D. Nagy, O. Gilg and Y. Kuang, The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles,, Math. Biosci., 221 (2009), 1. doi: 10.1016/j.mbs.2009.06.004. Google Scholar

show all references

References:
[1]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144. doi: 10.1137/S0036141000376086. Google Scholar

[2]

K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00, A MATLAB Package for Bifurcation Analysis of Delay Differential Equations,, Tech. rep., (2001). Google Scholar

[3]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). Google Scholar

[4]

X. Z. He, Stability and delays in a predator-prey system,, J. Math. Anal. Appl., 198 (1996), 355. doi: 10.1006/jmaa.1996.0087. Google Scholar

[5]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[6]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory,, 2nd ed., (1998). Google Scholar

[7]

J. P. LaSalle, The Stability of Dynamical Systems,, Reg. Conf. Ser. Appl. Math., (1976). Google Scholar

[8]

M. Y. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection,, Bull. Math. Bio., 73 (2011), 1774. doi: 10.1007/s11538-010-9591-7. Google Scholar

[9]

M. Y. Li, X. Lin and H. Wang, Global Hopf branches of a delayed HTLV-1 infection model: Coexistence of multiple attracting limit cycles,, Canadian Appl. Math. Quarterly, 20 (2012), 39. Google Scholar

[10]

R. M. May, Time delays versus stability in population models with two or three trophic levels,, Ecology, 54 (1973), 315. doi: 10.2307/1934339. Google Scholar

[11]

H. Shu, L, Wang and J. Wu, Global dynamics of Nicholson's blow y equation revisited: Onset and termination of nonlinear oscillations,, Journal of Differential Equations, 255 (2013), 2565. doi: 10.1016/j.jde.2013.06.020. Google Scholar

[12]

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system,, J. Math. Anal. Appl., 301 (2005), 1. doi: 10.1016/j.jmaa.2004.06.056. Google Scholar

[13]

H. Wang, J. D. Nagy, O. Gilg and Y. Kuang, The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles,, Math. Biosci., 221 (2009), 1. doi: 10.1016/j.mbs.2009.06.004. Google Scholar

[1]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[2]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[3]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[4]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[5]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[6]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[7]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[8]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[9]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[10]

Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273

[11]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[12]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[13]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[14]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[15]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[16]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[17]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[18]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

[19]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[20]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]