January  2014, 19(1): 73-88. doi: 10.3934/dcdsb.2014.19.73

Phase transition and separation in compressible Cahn-Hilliard fluids

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna, Italy

2. 

DICATAM, Università di Brescia, Via Valotti 9, 25133 Brescia, Italy

3. 

DIBRIS, Università di Genova, Via Opera Pia 13, 16145 Genova, Italy

Received  October 2012 Revised  July 2013 Published  December 2013

The paper provides a scheme for phase separation and transition by accounting for diffusion, dynamic equations and consistency with thermodynamics. The constituents are compressible fluids thus improving the model of a previous approach. Moreover a possible saturation effect for the concentration of a constituent is made explicit. The mass densities of the constituents are independent of temperature. The evolution of concentration is described by the standard equation for mixtures but the balance of energy and entropy of the mixture are stated as for a single constituent. However, due to the non-simple character of the mixture, an extra-energy flux is allowed to occur. Also motion and diffusion effects are considered by letting the stress in the mixture have additive viscous terms and, remarkably, the chemical potential contains a quadratic term in the stretching tensor. As a result a whole set of evolution equations is set up for the concentration, the velocity, and the temperature. Shear-induced mixing and demixing are examined. A maximum theorem is proved which implies that the concentration of the mixture has values from 0 to 1 as is required from the physical standpoint.
Citation: Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73
References:
[1]

V. Berti, C. Giorgi and M. Fabrizio, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13. Google Scholar

[2]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[3]

I. Steinbach and M. Apel, Multiphase field model for solid state transformation with elastic strain,, Physica D, 217 (2006), 153. doi: 10.1016/j.physd.2006.04.001. Google Scholar

[4]

I. Singer-Loginova and H. Singer, The phase field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008). doi: 10.1088/0034-4885/71/10/106501. Google Scholar

[5]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67. doi: 10.1007/s00032-009-0101-z. Google Scholar

[6]

J. D. van der Waals, Thermodynamique de la capillarité dans l'hypothèse d'une variation continue de densité,, Arch. Néerlandaises, 28 (): 1894. Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[8]

M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Mod. Meth. Appl. Sci., 6 (1996), 815. doi: 10.1142/S0218202596000341. Google Scholar

[9]

P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena,, Rev. Modern Physics, 49 (1977), 435. doi: 10.1103/RevModPhys.49.435. Google Scholar

[10]

D. Jasnow and J. Viñals, Coarse-grained description of thermo-capillary flow,, Phys. Fluids, 8 (1996), 660. doi: 10.1063/1.868851. Google Scholar

[11]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, Proc. R. Soc. Lond., A 454 (1998), 2617. doi: 10.1098/rspa.1998.0273. Google Scholar

[12]

A. Onuki, Phase transitions of fluids in shear flow,, J. Phys.: Condens. Matter, 9 (1997), 6119. doi: 10.1088/0953-8984/9/29/001. Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica D, 214 (2006), 144. doi: 10.1016/j.physd.2006.01.002. Google Scholar

[14]

M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, Eur. J. Mech., 30 (2011), 281. doi: 10.1016/j.euromechflu.2010.12.003. Google Scholar

[15]

I. Müller, Thermodynamics of mixtures of fluids,, J. Mécanique, 14 (1975), 267. Google Scholar

[16]

A. Morro, Governing equations in non-isothermal diffusion,, Int. J. Non-Lin. Mech., 55 (2013), 90. doi: 10.1016/j.ijnonlinmec.2013.04.010. Google Scholar

[17]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178. doi: 10.1016/0167-2789(95)00173-5. Google Scholar

[18]

J. D. Clayton and J. Knap, A phase field model of deformation twinning: Nonlinear theory and numerical simulations,, Physica D, 240 (2011), 841. doi: 10.1016/j.physd.2010.12.012. Google Scholar

[19]

E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Physica D, 68 (1993), 326. doi: 10.1016/0167-2789(93)90128-N. Google Scholar

[20]

C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system,, Physica D, 240 (2011), 629. doi: 10.1016/j.physd.2010.11.014. Google Scholar

[21]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility,, SIAM J. Math. Anal., 27 (1996), 404. doi: 10.1137/S0036141094267662. Google Scholar

[22]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions,, Int. J. Engng Sci., 44 (2006), 529. doi: 10.1016/j.ijengsci.2006.02.006. Google Scholar

[23]

M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order,, Math. Meth. Appl. Sci., 31 (2008), 627. doi: 10.1002/mma.930. Google Scholar

show all references

References:
[1]

V. Berti, C. Giorgi and M. Fabrizio, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13. Google Scholar

[2]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[3]

I. Steinbach and M. Apel, Multiphase field model for solid state transformation with elastic strain,, Physica D, 217 (2006), 153. doi: 10.1016/j.physd.2006.04.001. Google Scholar

[4]

I. Singer-Loginova and H. Singer, The phase field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008). doi: 10.1088/0034-4885/71/10/106501. Google Scholar

[5]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67. doi: 10.1007/s00032-009-0101-z. Google Scholar

[6]

J. D. van der Waals, Thermodynamique de la capillarité dans l'hypothèse d'une variation continue de densité,, Arch. Néerlandaises, 28 (): 1894. Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[8]

M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Mod. Meth. Appl. Sci., 6 (1996), 815. doi: 10.1142/S0218202596000341. Google Scholar

[9]

P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena,, Rev. Modern Physics, 49 (1977), 435. doi: 10.1103/RevModPhys.49.435. Google Scholar

[10]

D. Jasnow and J. Viñals, Coarse-grained description of thermo-capillary flow,, Phys. Fluids, 8 (1996), 660. doi: 10.1063/1.868851. Google Scholar

[11]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, Proc. R. Soc. Lond., A 454 (1998), 2617. doi: 10.1098/rspa.1998.0273. Google Scholar

[12]

A. Onuki, Phase transitions of fluids in shear flow,, J. Phys.: Condens. Matter, 9 (1997), 6119. doi: 10.1088/0953-8984/9/29/001. Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica D, 214 (2006), 144. doi: 10.1016/j.physd.2006.01.002. Google Scholar

[14]

M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, Eur. J. Mech., 30 (2011), 281. doi: 10.1016/j.euromechflu.2010.12.003. Google Scholar

[15]

I. Müller, Thermodynamics of mixtures of fluids,, J. Mécanique, 14 (1975), 267. Google Scholar

[16]

A. Morro, Governing equations in non-isothermal diffusion,, Int. J. Non-Lin. Mech., 55 (2013), 90. doi: 10.1016/j.ijnonlinmec.2013.04.010. Google Scholar

[17]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178. doi: 10.1016/0167-2789(95)00173-5. Google Scholar

[18]

J. D. Clayton and J. Knap, A phase field model of deformation twinning: Nonlinear theory and numerical simulations,, Physica D, 240 (2011), 841. doi: 10.1016/j.physd.2010.12.012. Google Scholar

[19]

E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Physica D, 68 (1993), 326. doi: 10.1016/0167-2789(93)90128-N. Google Scholar

[20]

C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system,, Physica D, 240 (2011), 629. doi: 10.1016/j.physd.2010.11.014. Google Scholar

[21]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility,, SIAM J. Math. Anal., 27 (1996), 404. doi: 10.1137/S0036141094267662. Google Scholar

[22]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions,, Int. J. Engng Sci., 44 (2006), 529. doi: 10.1016/j.ijengsci.2006.02.006. Google Scholar

[23]

M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order,, Math. Meth. Appl. Sci., 31 (2008), 627. doi: 10.1002/mma.930. Google Scholar

[1]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[2]

Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889

[3]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[4]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[5]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[6]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[7]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[8]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[9]

Kousuke Kuto, Tohru Tsujikawa. Stationary patterns for an adsorbate-induced phase transition model I: Existence. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1105-1117. doi: 10.3934/dcdsb.2010.14.1105

[10]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[11]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[12]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[13]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[14]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[15]

Francesco Della Porta, Maurizio Grasselli. Convective nonlocal Cahn-Hilliard equations with reaction terms. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1529-1553. doi: 10.3934/dcdsb.2015.20.1529

[16]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[17]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[18]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[19]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[20]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]