March  2014, 19(2): 419-434. doi: 10.3934/dcdsb.2014.19.419

Hyperbolic quenching problem with damping in the micro-electro mechanical system device

1. 

Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137

2. 

Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan

Received  May 2013 Revised  August 2013 Published  February 2014

We study the initial boundary value problem for the damped hyperbolic equation arising in the micro-electro mechanical system device with local or nonlocal singular nonlinearity. For both cases, we provide some criteria for quenching and global existence of the solution. We also derive the existence of the quenching curve for the corresponding Cauchy problem with local source.
Citation: Jong-Shenq Guo, Bo-Chih Huang. Hyperbolic quenching problem with damping in the micro-electro mechanical system device. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 419-434. doi: 10.3934/dcdsb.2014.19.419
References:
[1]

K. Agre and M. A. Rammaha, Quenching and non-quenching for nonlinear wave equations with damping,, Canad. Appl. Math. Quart., 9 (2001), 203. Google Scholar

[2]

A. Andrew and W. Wolfgang, The quenching problem for nonlinear parabolic differential equations,, in Ordinary and Partial Differential Equations, 564 (1976), 1. Google Scholar

[3]

A. Andrew and W. Wolfgang, On the global existence of solutions of parabolic differential equations with a singular nonlinear term,, Nonlinear Anal., 2 (1978), 499. doi: 10.1016/0362-546X(78)90057-3. Google Scholar

[4]

L. A. Caffarelli and A. Friedman, Differentiability of the blow-up curve for one-dimensional nonlinear wave equations,, Arch. Rational Mech. Anal., 91 (1985), 83. doi: 10.1007/BF00280224. Google Scholar

[5]

L. A. Caffarelli and A. Friedman, The blow-up boundary for nonlinear wave equations,, Trans. Amer. Math. Soc., 297 (1986), 223. doi: 10.1090/S0002-9947-1986-0849476-3. Google Scholar

[6]

P. H. Chang and H. A. Levine, The quenching of solutions of semiliear hyperbolic equations,, SIAM J. Math. Anal., 12 (1981), 893. doi: 10.1137/0512075. Google Scholar

[7]

S. Filippas and J.-S. Guo, Quenching profiles for one-dimensional semilinear heat equations,, Quart. Appl. Math., 51 (1993), 713. Google Scholar

[8]

J.-S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation,, J. Math. Anal. Appl., 151 (1990), 58. doi: 10.1016/0022-247X(90)90243-9. Google Scholar

[9]

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system,, Quarterly Appl. Math., 67 (2009), 725. Google Scholar

[10]

J.-S. Guo and N. I. Kavallaris, On a nonlocal parabolic problem arising in electrostatic MEMS control,, Discrete Contin. Dyn. Syst., 32 (2012), 1723. doi: 10.3934/dcds.2012.32.1723. Google Scholar

[11]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case,, Nonlinear Diff. Eqns. Appl., 15 (2008), 115. doi: 10.1007/s00030-007-6004-1. Google Scholar

[12]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl. Math., 16 (1963), 305. doi: 10.1002/cpa.3160160307. Google Scholar

[13]

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology,, Rocky Mountain J. Math., 41 (2011), 505. doi: 10.1216/RMJ-2011-41-2-505. Google Scholar

[14]

H. Kawarada, On solutions of initial boundary value problem for $u_t=u_{x x}+1/(1-u)$,, RIMS. Kyoto Univ., 10 (): 729. doi: 10.2977/prims/1195191889. Google Scholar

[15]

H. A. Levine, The phenomenon of quenching: A survey,, in Trends in the theory and practice of nonlinear analysis, 110 (1985), 275. doi: 10.1016/S0304-0208(08)72720-8. Google Scholar

[16]

H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations,, Ann. Mat. Pura Appl., 155 (1989), 243. doi: 10.1007/BF01765943. Google Scholar

[17]

H. A. Levine and J. T. Montgomery, The quenching of solutions of some nonlinear parabolic equations,, SIAM J. Math. Anal., 11 (1980), 842. doi: 10.1137/0511075. Google Scholar

[18]

F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation,, Amer. J. Math., 125 (2003), 1147. doi: 10.1353/ajm.2003.0033. Google Scholar

[19]

F. Merle and H. Zaag, Determination of the blow-up rate for a critical semilinear wave equation,, Math. Ann., 331 (2005), 395. doi: 10.1007/s00208-004-0587-1. Google Scholar

[20]

F. Merle and H. Zaag, Blow-up behavior outside the origin for a semilinear wave equation in the radial case,, Bull. Sci. Math., 135 (2011), 353. doi: 10.1016/j.bulsci.2011.03.001. Google Scholar

[21]

R. A. Smith, On a hyperbolic quenching problem in several dimensions,, SIAM J. Math. Anal., 20 (1989), 1081. doi: 10.1137/0520072. Google Scholar

[22]

J. Zhu, Quenching of solutions of nonlinear hyperbolic equations with damping,, in Differential and difference equations and applications, (2006), 1187. Google Scholar

show all references

References:
[1]

K. Agre and M. A. Rammaha, Quenching and non-quenching for nonlinear wave equations with damping,, Canad. Appl. Math. Quart., 9 (2001), 203. Google Scholar

[2]

A. Andrew and W. Wolfgang, The quenching problem for nonlinear parabolic differential equations,, in Ordinary and Partial Differential Equations, 564 (1976), 1. Google Scholar

[3]

A. Andrew and W. Wolfgang, On the global existence of solutions of parabolic differential equations with a singular nonlinear term,, Nonlinear Anal., 2 (1978), 499. doi: 10.1016/0362-546X(78)90057-3. Google Scholar

[4]

L. A. Caffarelli and A. Friedman, Differentiability of the blow-up curve for one-dimensional nonlinear wave equations,, Arch. Rational Mech. Anal., 91 (1985), 83. doi: 10.1007/BF00280224. Google Scholar

[5]

L. A. Caffarelli and A. Friedman, The blow-up boundary for nonlinear wave equations,, Trans. Amer. Math. Soc., 297 (1986), 223. doi: 10.1090/S0002-9947-1986-0849476-3. Google Scholar

[6]

P. H. Chang and H. A. Levine, The quenching of solutions of semiliear hyperbolic equations,, SIAM J. Math. Anal., 12 (1981), 893. doi: 10.1137/0512075. Google Scholar

[7]

S. Filippas and J.-S. Guo, Quenching profiles for one-dimensional semilinear heat equations,, Quart. Appl. Math., 51 (1993), 713. Google Scholar

[8]

J.-S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation,, J. Math. Anal. Appl., 151 (1990), 58. doi: 10.1016/0022-247X(90)90243-9. Google Scholar

[9]

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system,, Quarterly Appl. Math., 67 (2009), 725. Google Scholar

[10]

J.-S. Guo and N. I. Kavallaris, On a nonlocal parabolic problem arising in electrostatic MEMS control,, Discrete Contin. Dyn. Syst., 32 (2012), 1723. doi: 10.3934/dcds.2012.32.1723. Google Scholar

[11]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case,, Nonlinear Diff. Eqns. Appl., 15 (2008), 115. doi: 10.1007/s00030-007-6004-1. Google Scholar

[12]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl. Math., 16 (1963), 305. doi: 10.1002/cpa.3160160307. Google Scholar

[13]

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology,, Rocky Mountain J. Math., 41 (2011), 505. doi: 10.1216/RMJ-2011-41-2-505. Google Scholar

[14]

H. Kawarada, On solutions of initial boundary value problem for $u_t=u_{x x}+1/(1-u)$,, RIMS. Kyoto Univ., 10 (): 729. doi: 10.2977/prims/1195191889. Google Scholar

[15]

H. A. Levine, The phenomenon of quenching: A survey,, in Trends in the theory and practice of nonlinear analysis, 110 (1985), 275. doi: 10.1016/S0304-0208(08)72720-8. Google Scholar

[16]

H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations,, Ann. Mat. Pura Appl., 155 (1989), 243. doi: 10.1007/BF01765943. Google Scholar

[17]

H. A. Levine and J. T. Montgomery, The quenching of solutions of some nonlinear parabolic equations,, SIAM J. Math. Anal., 11 (1980), 842. doi: 10.1137/0511075. Google Scholar

[18]

F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation,, Amer. J. Math., 125 (2003), 1147. doi: 10.1353/ajm.2003.0033. Google Scholar

[19]

F. Merle and H. Zaag, Determination of the blow-up rate for a critical semilinear wave equation,, Math. Ann., 331 (2005), 395. doi: 10.1007/s00208-004-0587-1. Google Scholar

[20]

F. Merle and H. Zaag, Blow-up behavior outside the origin for a semilinear wave equation in the radial case,, Bull. Sci. Math., 135 (2011), 353. doi: 10.1016/j.bulsci.2011.03.001. Google Scholar

[21]

R. A. Smith, On a hyperbolic quenching problem in several dimensions,, SIAM J. Math. Anal., 20 (1989), 1081. doi: 10.1137/0520072. Google Scholar

[22]

J. Zhu, Quenching of solutions of nonlinear hyperbolic equations with damping,, in Differential and difference equations and applications, (2006), 1187. Google Scholar

[1]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[2]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[3]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[4]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[5]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[6]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[7]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[8]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[9]

Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2417-2423. doi: 10.3934/dcdsb.2014.19.2417

[10]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[11]

Vincenzo Ambrosio, Giovanni Molica Bisci. Periodic solutions for nonlocal fractional equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 331-344. doi: 10.3934/cpaa.2017016

[12]

Daniele Cassani, Antonio Tarsia. Periodic solutions to nonlocal MEMS equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 631-642. doi: 10.3934/dcdss.2016017

[13]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[14]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[15]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[16]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[17]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[18]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[19]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[20]

Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]