November  2014, 19(9): 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative

1. 

Unité de recherche : Multifractales et Ondelettes, Faculté des Sciences de Monastir, Av. de l'environnement 5019 Monastir, Tunisia

Received  June 2013 Revised  March 2014 Published  September 2014

In this paper, we study the water wave model with a nonlocal viscous term \begin{equation*} u_t + u_x + \beta u_{x x x} + \frac{\sqrt \nu}{\sqrt \pi}\frac{\partial}{\partial t} \int_0^t\frac{u(s)}{\sqrt{t-s}} ds + u u_x = v u_{xx}, \end{equation*} where $\frac{1}{\sqrt \pi}\frac{\partial}{\partial t} \int_0^t\frac{u(s)}{\sqrt{t-s}} ds $ is the Riemann-Liouville half derivative. We prove the well-posedness of the equation and we investigate theoretically and numerically the asymptotical behavior of the solutions. Also, we compare our theoretical and numerical results with those given in [4] for a similar equation.
Citation: Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837
References:
[1]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1. doi: 10.1016/0022-0396(89)90176-9. Google Scholar

[2]

J. L. Bona, M. Chen and J.-C Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory,, J. Nonlinear Sci., 12 (2002), 283. doi: 10.1007/s00332-002-0466-4. Google Scholar

[3]

J. L. Bona, F. Demengel and K. Promislow, Fourier splitting and dissipation of nonlinear dispersive waves,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 477. doi: 10.1017/S0308210500021478. Google Scholar

[4]

M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with a nonlocal viscous dispersive term,, Discrete Contin. Dyn. Syst., 27 (2010), 1473. doi: 10.3934/dcds.2010.27.1473. Google Scholar

[5]

M. Chen and O. Goubet, Long-time asymptotic behavior of 2D dissipative boussinesq system,, Discrete Contin. Dyn. Syst., 17 (2007), 509. doi: 10.3934/dcds.2007.17.509. Google Scholar

[6]

S. Dumont and J.-B Duval, Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity,, International Journal of Numerical Analysis and Modeling, 10 (2013), 333. Google Scholar

[7]

D. Dutykh, Viscous-potential free-surface flows and long wave modelling,, Eur. J. Mech. B Fluids, 28 (2009), 430. doi: 10.1016/j.euromechflu.2008.11.003. Google Scholar

[8]

D. Dutykh and F. Dias, Viscous potential free surface flows in a fluid layer of finite depth,, C.R.A.S, 345 (2007), 113. doi: 10.1016/j.crma.2007.06.007. Google Scholar

[9]

, tm., (). Google Scholar

[10]

A. C Galucio, J.-F Deü and F. Dubois, The $G^\alpha$-scheme for approximation of fractional derivatives: Application to the dynamics of dissipative systems,, J. Vib. Control, 14 (2008), 1597. doi: 10.1177/1077546307087427. Google Scholar

[11]

A. C Galucio, J.-F Deü, S. Mengué and F. Dubois, An adaptation of the Gear scheme for fractional derivatives,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 6073. doi: 10.1016/j.cma.2005.10.013. Google Scholar

[12]

O. Goubet and G. Warnault, Decay of solutions to a linear viscous asymptotic model for waterwaves,, Chinese Ann. Math. Ser. B, 31 (2010), 841. doi: 10.1007/s11401-010-0615-2. Google Scholar

[13]

N. Hayashi, E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations,, Lecture Notes in Mathematics, (1884). doi: 10.1007/b133345. Google Scholar

[14]

T. Kakutani and M. Matsuuchi, Effect of viscosity on long gravity waves,, J. Phys. Soc. Japan, 39 (1975), 237. doi: 10.1143/JPSJ.39.237. Google Scholar

[15]

P. Liu and A. Orfila, Viscous effects on transient long wave propagation,, J. Fluid Mech., 520 (2004), 83. doi: 10.1017/S0022112004001806. Google Scholar

show all references

References:
[1]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1. doi: 10.1016/0022-0396(89)90176-9. Google Scholar

[2]

J. L. Bona, M. Chen and J.-C Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory,, J. Nonlinear Sci., 12 (2002), 283. doi: 10.1007/s00332-002-0466-4. Google Scholar

[3]

J. L. Bona, F. Demengel and K. Promislow, Fourier splitting and dissipation of nonlinear dispersive waves,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 477. doi: 10.1017/S0308210500021478. Google Scholar

[4]

M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with a nonlocal viscous dispersive term,, Discrete Contin. Dyn. Syst., 27 (2010), 1473. doi: 10.3934/dcds.2010.27.1473. Google Scholar

[5]

M. Chen and O. Goubet, Long-time asymptotic behavior of 2D dissipative boussinesq system,, Discrete Contin. Dyn. Syst., 17 (2007), 509. doi: 10.3934/dcds.2007.17.509. Google Scholar

[6]

S. Dumont and J.-B Duval, Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity,, International Journal of Numerical Analysis and Modeling, 10 (2013), 333. Google Scholar

[7]

D. Dutykh, Viscous-potential free-surface flows and long wave modelling,, Eur. J. Mech. B Fluids, 28 (2009), 430. doi: 10.1016/j.euromechflu.2008.11.003. Google Scholar

[8]

D. Dutykh and F. Dias, Viscous potential free surface flows in a fluid layer of finite depth,, C.R.A.S, 345 (2007), 113. doi: 10.1016/j.crma.2007.06.007. Google Scholar

[9]

, tm., (). Google Scholar

[10]

A. C Galucio, J.-F Deü and F. Dubois, The $G^\alpha$-scheme for approximation of fractional derivatives: Application to the dynamics of dissipative systems,, J. Vib. Control, 14 (2008), 1597. doi: 10.1177/1077546307087427. Google Scholar

[11]

A. C Galucio, J.-F Deü, S. Mengué and F. Dubois, An adaptation of the Gear scheme for fractional derivatives,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 6073. doi: 10.1016/j.cma.2005.10.013. Google Scholar

[12]

O. Goubet and G. Warnault, Decay of solutions to a linear viscous asymptotic model for waterwaves,, Chinese Ann. Math. Ser. B, 31 (2010), 841. doi: 10.1007/s11401-010-0615-2. Google Scholar

[13]

N. Hayashi, E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations,, Lecture Notes in Mathematics, (1884). doi: 10.1007/b133345. Google Scholar

[14]

T. Kakutani and M. Matsuuchi, Effect of viscosity on long gravity waves,, J. Phys. Soc. Japan, 39 (1975), 237. doi: 10.1143/JPSJ.39.237. Google Scholar

[15]

P. Liu and A. Orfila, Viscous effects on transient long wave propagation,, J. Fluid Mech., 520 (2004), 83. doi: 10.1017/S0022112004001806. Google Scholar

[1]

Min Chen, S. Dumont, Louis Dupaigne, Olivier Goubet. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1473-1492. doi: 10.3934/dcds.2010.27.1473

[2]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[3]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[4]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[5]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[6]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 695-708. doi: 10.3934/dcdss.2020038

[7]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[8]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[9]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[10]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[11]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[12]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[13]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[14]

Vincenzo Ambrosio, Giovanni Molica Bisci. Periodic solutions for nonlocal fractional equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 331-344. doi: 10.3934/cpaa.2017016

[15]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

[16]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 377-387. doi: 10.3934/dcdss.2020021

[17]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[18]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[19]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[20]

B. Bidégaray-Fesquet, F. Castella, Pierre Degond. From Bloch model to the rate equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 1-26. doi: 10.3934/dcds.2004.11.1

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]