October  2014, 19(8): 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

Systems described by Volterra type integral operators

1. 

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland, Poland, Poland

Received  October 2013 Revised  March 2014 Published  August 2014

In the paper we consider a nonlinear Volterra integral operator defined on some subspace of absolutely continuous function. Some sufficient conditions for the operator considered to be a diffeomorphism are formulated. The proof of main result relies in essential way on variational method. Applications of results to control systems with feedback and a specific nonlinear Volterra equation are presented.
Citation: Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401
References:
[1]

Z. Artstein, Continuous dependence of solutions of Volterra integral equations,, SIAM J. Math. Anal., 6 (1975), 446. doi: 10.1137/0506039. Google Scholar

[2]

T. M. Atanackovic and S. Pilipovic, On a class of equations arising in linear viscoelastic theory,, ZAMM Z. Angew. Math. Mech., 85 (2005), 748. doi: 10.1002/zamm.200310209. Google Scholar

[3]

D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian,, Abstr. Appl. Anal., 2013 (2408). doi: 10.1155/2013/240863. Google Scholar

[4]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge Monographs on Applied and Computational Mathematics, (2004). doi: 10.1017/CBO9780511543234. Google Scholar

[5]

R. M. Christensen, Theory of Viscoelasticity,, Academic Press, (1982). doi: 10.1115/1.3408900. Google Scholar

[6]

C. Corduneanu, Integral Equations and Applications,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569395. Google Scholar

[7]

M. A. Darwish, A. A. El-Bary and W. G. El-Sayed, Solvability of Urysohn integral equation,, Appl. Math. Comput., 145 (2003), 487. doi: 10.1016/S0096-3003(02)00504-0. Google Scholar

[8]

A. Friedman, On integral equations of Volterra type,, J. Analyse Math., 11 (1963), 381. doi: 10.1007/BF02789991. Google Scholar

[9]

A. Friedman and M. Shinbrot, Volterra integral equations in Banach space,, Trans. Amer. Math. Soc., 126 (1967), 131. doi: 10.1090/S0002-9947-1967-0206754-7. Google Scholar

[10]

G. Gripenberg, An abstract nonlinear Volterra equation,, Israel J. Math., 34 (1979), 198. doi: 10.1007/BF02760883. Google Scholar

[11]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,, Cambridge University Press, (1990). doi: 10.1017/CBO9780511662805. Google Scholar

[12]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces,, Adv. Nonlinear Stud., 12 (2012), 89. Google Scholar

[13]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, Studies in Mathematics and its Applications, (1979). Google Scholar

[14]

M. Joshi, Existence theorems for Urysohn's integral equation,, Proc. Amer. Math. Soc., 49 (1975), 387. Google Scholar

[15]

T. Kiffe and M. Stecher, $L^{2}$ solutions of Volterra integral equations,, SIAM J. Math. Anal., 10 (1979), 274. doi: 10.1137/0510026. Google Scholar

[16]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, I,, Academic Press, (1969). Google Scholar

[17]

S. -O. Londen, Stability analysis on nonlinear point reactor kinetics,, Adv. Sci. Tech., 6 (1972), 45. Google Scholar

[18]

A. G. J. MacFarlane, ed., Frequency-Response Methods in Control Systems,, Selected Reprint Series, (1979). Google Scholar

[19]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[20]

R. K. Miller, Nonlinear Volterra Integral Equations,, Mathematics Lecture Note Series, (1971). Google Scholar

[21]

M. S. Mousa, R. K. Miller and A. N. Michel, Stability analysis of hybrid composite dynamical systems: descriptions involving operators and differential equations,, IEEE Trans. Automat. Control, 31 (1986), 216. doi: 10.1109/TAC.1986.1104251. Google Scholar

[22]

D. O'Regan, Volterra and Urysohn integral equations in Banach Spaces,, J. Appl. Math. Stochastic Anal., 11 (1998), 449. doi: 10.1155/S1048953398000379. Google Scholar

[23]

M. Z. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshot evaluation,, IEEE Trans. Automat. Control, 31 (1986), 108. doi: 10.1109/TAC.1986.1104204. Google Scholar

[24]

J. Prüss, Evolutionary Integral Equations and Applications,, Modern Birkhäuser Classics, (2012). doi: 10.1007/978-3-0348-8570-6. Google Scholar

[25]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity,, Pitman Monographs Pure Appl. Math.Longman Sci. Tech., (1987). Google Scholar

[26]

R. S. Sánchez-Peńa and M. Sznaier, Robust Systems Theory and Applications,, Wiley-Interscience, (1998). Google Scholar

show all references

References:
[1]

Z. Artstein, Continuous dependence of solutions of Volterra integral equations,, SIAM J. Math. Anal., 6 (1975), 446. doi: 10.1137/0506039. Google Scholar

[2]

T. M. Atanackovic and S. Pilipovic, On a class of equations arising in linear viscoelastic theory,, ZAMM Z. Angew. Math. Mech., 85 (2005), 748. doi: 10.1002/zamm.200310209. Google Scholar

[3]

D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian,, Abstr. Appl. Anal., 2013 (2408). doi: 10.1155/2013/240863. Google Scholar

[4]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge Monographs on Applied and Computational Mathematics, (2004). doi: 10.1017/CBO9780511543234. Google Scholar

[5]

R. M. Christensen, Theory of Viscoelasticity,, Academic Press, (1982). doi: 10.1115/1.3408900. Google Scholar

[6]

C. Corduneanu, Integral Equations and Applications,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569395. Google Scholar

[7]

M. A. Darwish, A. A. El-Bary and W. G. El-Sayed, Solvability of Urysohn integral equation,, Appl. Math. Comput., 145 (2003), 487. doi: 10.1016/S0096-3003(02)00504-0. Google Scholar

[8]

A. Friedman, On integral equations of Volterra type,, J. Analyse Math., 11 (1963), 381. doi: 10.1007/BF02789991. Google Scholar

[9]

A. Friedman and M. Shinbrot, Volterra integral equations in Banach space,, Trans. Amer. Math. Soc., 126 (1967), 131. doi: 10.1090/S0002-9947-1967-0206754-7. Google Scholar

[10]

G. Gripenberg, An abstract nonlinear Volterra equation,, Israel J. Math., 34 (1979), 198. doi: 10.1007/BF02760883. Google Scholar

[11]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,, Cambridge University Press, (1990). doi: 10.1017/CBO9780511662805. Google Scholar

[12]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces,, Adv. Nonlinear Stud., 12 (2012), 89. Google Scholar

[13]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, Studies in Mathematics and its Applications, (1979). Google Scholar

[14]

M. Joshi, Existence theorems for Urysohn's integral equation,, Proc. Amer. Math. Soc., 49 (1975), 387. Google Scholar

[15]

T. Kiffe and M. Stecher, $L^{2}$ solutions of Volterra integral equations,, SIAM J. Math. Anal., 10 (1979), 274. doi: 10.1137/0510026. Google Scholar

[16]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, I,, Academic Press, (1969). Google Scholar

[17]

S. -O. Londen, Stability analysis on nonlinear point reactor kinetics,, Adv. Sci. Tech., 6 (1972), 45. Google Scholar

[18]

A. G. J. MacFarlane, ed., Frequency-Response Methods in Control Systems,, Selected Reprint Series, (1979). Google Scholar

[19]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[20]

R. K. Miller, Nonlinear Volterra Integral Equations,, Mathematics Lecture Note Series, (1971). Google Scholar

[21]

M. S. Mousa, R. K. Miller and A. N. Michel, Stability analysis of hybrid composite dynamical systems: descriptions involving operators and differential equations,, IEEE Trans. Automat. Control, 31 (1986), 216. doi: 10.1109/TAC.1986.1104251. Google Scholar

[22]

D. O'Regan, Volterra and Urysohn integral equations in Banach Spaces,, J. Appl. Math. Stochastic Anal., 11 (1998), 449. doi: 10.1155/S1048953398000379. Google Scholar

[23]

M. Z. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshot evaluation,, IEEE Trans. Automat. Control, 31 (1986), 108. doi: 10.1109/TAC.1986.1104204. Google Scholar

[24]

J. Prüss, Evolutionary Integral Equations and Applications,, Modern Birkhäuser Classics, (2012). doi: 10.1007/978-3-0348-8570-6. Google Scholar

[25]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity,, Pitman Monographs Pure Appl. Math.Longman Sci. Tech., (1987). Google Scholar

[26]

R. S. Sánchez-Peńa and M. Sznaier, Robust Systems Theory and Applications,, Wiley-Interscience, (1998). Google Scholar

[1]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[2]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[3]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[4]

Patricio Felmer, Alexander Quaas. Fundamental solutions for a class of Isaacs integral operators. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 493-508. doi: 10.3934/dcds.2011.30.493

[5]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[6]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[7]

Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141

[8]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[9]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[10]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[11]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[12]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[13]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[14]

Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110

[15]

Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152

[16]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[17]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[18]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[19]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[20]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]