• Previous Article
    Strain gradient theory of porous solids with initial stresses and initial heat flux
  • DCDS-B Home
  • This Issue
  • Next Article
    Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model
September  2014, 19(7): 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

Second-sound phenomena in inviscid, thermally relaxing gases

1. 

Acoustics Div., U.S. Naval Research Laboratory, Stennis Space Ctr., MS 39529, United States

Received  April 2013 Revised  August 2013 Published  August 2014

We consider the propagation of acoustic and thermal waves in a class of inviscid, thermally relaxing gases wherein the flow of heat is described by the Maxwell--Cattaneo law, i.e., in Cattaneo--Christov gases. After first considering the start-up piston problem under the linear theory, we then investigate traveling wave phenomena under the weakly-nonlinear approximation. In particular, a shock analysis is carried out, comparisons with predictions from classical gases dynamics theory are performed, and critical values of the parameters are derived. Special case results are also presented and connections to other fields are noted.
Citation: Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189
References:
[1]

R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics, (1997), 25. Google Scholar

[2]

B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems,, J. Appl. Mech. (ASME), 35 (1968), 489. doi: 10.1115/1.3601240. Google Scholar

[3]

S. Carillo, Bäcklund transformations & heat conduction with memory,, in New Trends in Fluid and Solid Models: Proceedings of the International Conference in Honour of Brian Straughan (Supplementary) (eds. M. Ciarletta, (2010), 8. Google Scholar

[4]

S. Carillo, Nonlinear hyperbolic equations and linear heat conduction with memory,, in Mechanics of Microstructured Solids 2, (2010), 63. doi: 10.1007/978-3-642-05171-5_7. Google Scholar

[5]

M. Carrassi and A. Morro, A modified Navier-Stokes equations and its consequences on sound dispersion,, Nuovo Cimento B, 9 (1972), 321. doi: 10.1007/BF02734451. Google Scholar

[6]

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,, Dover, (1963). Google Scholar

[7]

C. Cattaneo, Sulla conduzione del calore,, Atti del Semin. Mat. Fis. Della Univ. Modena, 3 (1949), 83. Google Scholar

[8]

D. S. Chandrasekharaiah, Thermoelasticity with second sound: A Review,, Appl. Mech. Rev., 39 (1986), 355. Google Scholar

[9]

W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44. doi: 10.1017/S0022112064000040. Google Scholar

[10]

C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Commun., 36 (2009), 481. doi: 10.1016/j.mechrescom.2008.11.003. Google Scholar

[11]

I. C. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008). doi: 10.1088/1367-2630/10/4/043027. Google Scholar

[12]

I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simul., (2013). doi: 10.1016/j.matcom.2013.03.011. Google Scholar

[13]

B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals,, Arch. Rat. Mech. Anal., 80 (1982), 135. doi: 10.1007/BF00250739. Google Scholar

[14]

D. G. Crighton, Model equations of nonlinear acoustics,, Ann. Rev. Fluid Mech., 11 (1979), 11. doi: 10.1146/annurev.fl.11.010179.000303. Google Scholar

[15]

D. G. Crighton, Basic theoretical nonlinear acoustics,, in Frontiers in Physical Acoustics, (1986), 1. Google Scholar

[16]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edn., (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[17]

W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,, Cont. Mech. Thermodyn, 5 (1993), 3. doi: 10.1007/BF01135371. Google Scholar

[18]

D. G. Duffy, Transform Methods for Solving Partial Differential Equations,, 2nd edn., (2004). doi: 10.1201/9781420035148. Google Scholar

[19]

P. H. Francis, Thermo-mechanical effects in elastic wave propagation: A survey,, J. Sound Vib., 21 (1972), 181. doi: 10.1016/0022-460X(72)90905-4. Google Scholar

[20]

H. Grad, Thermodynamics of gases,, in Handbuch der Physik (ed. S. Flügge), XII (1960), 205. Google Scholar

[21]

P. M. Jordan, On the application of the Cole-Hopf transformation to hyperbolic equations based on second-sound models,, Math. Comput. Simul., 81 (2010), 18. doi: 10.1016/j.matcom.2010.06.011. Google Scholar

[22]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56. doi: 10.1016/j.euromechflu.2012.01.016. Google Scholar

[23]

P. M. Jordan and P. Puri, Revisiting the Danilovskaya problem,, J. Thermal Stresses, 29 (2006), 865. doi: 10.1080/01495730600705505. Google Scholar

[24]

D. Jou, C. Cásas-Vazquez and G. Lebon, Extended irreversible thermodynamics revisited (1988-98),, Rep. Prog. Phys., 62 (1999), 1035. doi: 10.1088/0034-4885/62/7/201. Google Scholar

[25]

B. Kaltenbacher, I. Lasieck and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500352. Google Scholar

[26]

R. E. Khayat and M. Ostoja-Starzewski, On the objective rate of heat and stress fluxes: Connection with micro/nano-scale heat convection,, Discrete Cont. Dyn. Sys., 15 (2011), 991. doi: 10.3934/dcdsb.2011.15.991. Google Scholar

[27]

M. B. Lesser, R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501. doi: 10.1017/S0022112068000303. Google Scholar

[28]

K. A. Lindsay, B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rat. Mech. Anal., 68 (1978), 53. doi: 10.1007/BF00276179. Google Scholar

[29]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acustica-Acta Acustica, 82 (1996), 579. Google Scholar

[30]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc. London, 157 (1867), 49. Google Scholar

[31]

F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects,, J. Aero/Space Sci., 27 (1960), 117. Google Scholar

[32]

J. P. Moran and S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston,, J. Fluid Mech., 25 (1966), 705. doi: 10.1017/S0022112066000351. Google Scholar

[33]

A. Morro, Wave propagation in thermo-viscous materials with hidden variables,, Arch. Mech., 32 (1980), 145. Google Scholar

[34]

A. Morro, Shock waves in thermo-viscous fluids with hidden variables,, Arch. Mech., 32 (1980), 193. Google Scholar

[35]

I. Müller, Zum Paradoxon der Wärmeleitungstheorie,, Z. Phys., 198 (1967), 329. Google Scholar

[36]

I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer Tracts in Natural Philosophy, (1993). doi: 10.1007/978-1-4684-0447-0. Google Scholar

[37]

V. Peshkov, "Second sound'' in helium II,, J. Phys., 8 (1944). Google Scholar

[38]

A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989). Google Scholar

[39]

T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,, Acta Mech., 47 (1983), 167. doi: 10.1007/BF01189206. Google Scholar

[40]

T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws,, Cont. Mech. Thermodyn, 1 (1989), 3. doi: 10.1007/BF01125883. Google Scholar

[41]

J. Serrin, Mathematical principles of classical fluid mechanics,, in Handbuch der Physik, (1959), 125. Google Scholar

[42]

G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound,, Phil. Mag. (Ser. 4), 3 (2009), 142. doi: 10.1017/CBO9780511702266.005. Google Scholar

[43]

B. Straughan, Nonlinear acceleration waves in porous media,, Math. Comput. Simul., 80 (2009), 763. doi: 10.1016/j.matcom.2009.08.013. Google Scholar

[44]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667. doi: 10.1016/j.physleta.2010.04.054. Google Scholar

[45]

B. Straughan, Heat Waves,, Applied Mathematical Sciences, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar

[46]

P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972). Google Scholar

[47]

J. S. Toll, Causality and the dispersion relation: Logical foundations,, Phys. Rev., 104 (1956), 1760. doi: 10.1103/PhysRev.104.1760. Google Scholar

[48]

V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids,, Mech. Res. Commun., 38 (2011), 77. doi: 10.1016/j.mechrescom.2010.10.008. Google Scholar

[49]

D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior,, Taylor & Francis, (1997). Google Scholar

[50]

H. D. Weymann, Finite speed of propagation in heat conduction, diffusion, and viscous shear motion,, Amer. J. Phys., 35 (1967), 488. doi: 10.1119/1.1974155. Google Scholar

show all references

References:
[1]

R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics, (1997), 25. Google Scholar

[2]

B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems,, J. Appl. Mech. (ASME), 35 (1968), 489. doi: 10.1115/1.3601240. Google Scholar

[3]

S. Carillo, Bäcklund transformations & heat conduction with memory,, in New Trends in Fluid and Solid Models: Proceedings of the International Conference in Honour of Brian Straughan (Supplementary) (eds. M. Ciarletta, (2010), 8. Google Scholar

[4]

S. Carillo, Nonlinear hyperbolic equations and linear heat conduction with memory,, in Mechanics of Microstructured Solids 2, (2010), 63. doi: 10.1007/978-3-642-05171-5_7. Google Scholar

[5]

M. Carrassi and A. Morro, A modified Navier-Stokes equations and its consequences on sound dispersion,, Nuovo Cimento B, 9 (1972), 321. doi: 10.1007/BF02734451. Google Scholar

[6]

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,, Dover, (1963). Google Scholar

[7]

C. Cattaneo, Sulla conduzione del calore,, Atti del Semin. Mat. Fis. Della Univ. Modena, 3 (1949), 83. Google Scholar

[8]

D. S. Chandrasekharaiah, Thermoelasticity with second sound: A Review,, Appl. Mech. Rev., 39 (1986), 355. Google Scholar

[9]

W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44. doi: 10.1017/S0022112064000040. Google Scholar

[10]

C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Commun., 36 (2009), 481. doi: 10.1016/j.mechrescom.2008.11.003. Google Scholar

[11]

I. C. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008). doi: 10.1088/1367-2630/10/4/043027. Google Scholar

[12]

I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simul., (2013). doi: 10.1016/j.matcom.2013.03.011. Google Scholar

[13]

B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals,, Arch. Rat. Mech. Anal., 80 (1982), 135. doi: 10.1007/BF00250739. Google Scholar

[14]

D. G. Crighton, Model equations of nonlinear acoustics,, Ann. Rev. Fluid Mech., 11 (1979), 11. doi: 10.1146/annurev.fl.11.010179.000303. Google Scholar

[15]

D. G. Crighton, Basic theoretical nonlinear acoustics,, in Frontiers in Physical Acoustics, (1986), 1. Google Scholar

[16]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edn., (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[17]

W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,, Cont. Mech. Thermodyn, 5 (1993), 3. doi: 10.1007/BF01135371. Google Scholar

[18]

D. G. Duffy, Transform Methods for Solving Partial Differential Equations,, 2nd edn., (2004). doi: 10.1201/9781420035148. Google Scholar

[19]

P. H. Francis, Thermo-mechanical effects in elastic wave propagation: A survey,, J. Sound Vib., 21 (1972), 181. doi: 10.1016/0022-460X(72)90905-4. Google Scholar

[20]

H. Grad, Thermodynamics of gases,, in Handbuch der Physik (ed. S. Flügge), XII (1960), 205. Google Scholar

[21]

P. M. Jordan, On the application of the Cole-Hopf transformation to hyperbolic equations based on second-sound models,, Math. Comput. Simul., 81 (2010), 18. doi: 10.1016/j.matcom.2010.06.011. Google Scholar

[22]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56. doi: 10.1016/j.euromechflu.2012.01.016. Google Scholar

[23]

P. M. Jordan and P. Puri, Revisiting the Danilovskaya problem,, J. Thermal Stresses, 29 (2006), 865. doi: 10.1080/01495730600705505. Google Scholar

[24]

D. Jou, C. Cásas-Vazquez and G. Lebon, Extended irreversible thermodynamics revisited (1988-98),, Rep. Prog. Phys., 62 (1999), 1035. doi: 10.1088/0034-4885/62/7/201. Google Scholar

[25]

B. Kaltenbacher, I. Lasieck and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500352. Google Scholar

[26]

R. E. Khayat and M. Ostoja-Starzewski, On the objective rate of heat and stress fluxes: Connection with micro/nano-scale heat convection,, Discrete Cont. Dyn. Sys., 15 (2011), 991. doi: 10.3934/dcdsb.2011.15.991. Google Scholar

[27]

M. B. Lesser, R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501. doi: 10.1017/S0022112068000303. Google Scholar

[28]

K. A. Lindsay, B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rat. Mech. Anal., 68 (1978), 53. doi: 10.1007/BF00276179. Google Scholar

[29]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acustica-Acta Acustica, 82 (1996), 579. Google Scholar

[30]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc. London, 157 (1867), 49. Google Scholar

[31]

F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects,, J. Aero/Space Sci., 27 (1960), 117. Google Scholar

[32]

J. P. Moran and S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston,, J. Fluid Mech., 25 (1966), 705. doi: 10.1017/S0022112066000351. Google Scholar

[33]

A. Morro, Wave propagation in thermo-viscous materials with hidden variables,, Arch. Mech., 32 (1980), 145. Google Scholar

[34]

A. Morro, Shock waves in thermo-viscous fluids with hidden variables,, Arch. Mech., 32 (1980), 193. Google Scholar

[35]

I. Müller, Zum Paradoxon der Wärmeleitungstheorie,, Z. Phys., 198 (1967), 329. Google Scholar

[36]

I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer Tracts in Natural Philosophy, (1993). doi: 10.1007/978-1-4684-0447-0. Google Scholar

[37]

V. Peshkov, "Second sound'' in helium II,, J. Phys., 8 (1944). Google Scholar

[38]

A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989). Google Scholar

[39]

T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,, Acta Mech., 47 (1983), 167. doi: 10.1007/BF01189206. Google Scholar

[40]

T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws,, Cont. Mech. Thermodyn, 1 (1989), 3. doi: 10.1007/BF01125883. Google Scholar

[41]

J. Serrin, Mathematical principles of classical fluid mechanics,, in Handbuch der Physik, (1959), 125. Google Scholar

[42]

G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound,, Phil. Mag. (Ser. 4), 3 (2009), 142. doi: 10.1017/CBO9780511702266.005. Google Scholar

[43]

B. Straughan, Nonlinear acceleration waves in porous media,, Math. Comput. Simul., 80 (2009), 763. doi: 10.1016/j.matcom.2009.08.013. Google Scholar

[44]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667. doi: 10.1016/j.physleta.2010.04.054. Google Scholar

[45]

B. Straughan, Heat Waves,, Applied Mathematical Sciences, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar

[46]

P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972). Google Scholar

[47]

J. S. Toll, Causality and the dispersion relation: Logical foundations,, Phys. Rev., 104 (1956), 1760. doi: 10.1103/PhysRev.104.1760. Google Scholar

[48]

V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids,, Mech. Res. Commun., 38 (2011), 77. doi: 10.1016/j.mechrescom.2010.10.008. Google Scholar

[49]

D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior,, Taylor & Francis, (1997). Google Scholar

[50]

H. D. Weymann, Finite speed of propagation in heat conduction, diffusion, and viscous shear motion,, Amer. J. Phys., 35 (1967), 488. doi: 10.1119/1.1974155. Google Scholar

[1]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[2]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[3]

Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations & Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009

[4]

Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 645-662. doi: 10.3934/dcdss.2020035

[5]

James K. Knowles. On shock waves in solids. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 573-580. doi: 10.3934/dcdsb.2007.7.573

[6]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[7]

Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857

[8]

Ivan C. Christov. Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids. Evolution Equations & Control Theory, 2016, 5 (3) : 349-365. doi: 10.3934/eect.2016008

[9]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[10]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[11]

Joseph Thirouin. Classification of traveling waves for a quadratic Szegő equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3099-3122. doi: 10.3934/dcds.2019128

[12]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[13]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[14]

Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661

[15]

Albert Erkip, Abba I. Ramadan. Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2125-2132. doi: 10.3934/cpaa.2017105

[16]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[17]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[18]

Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 489-523. doi: 10.3934/dcds.2011.31.489

[19]

Jonatan Lenells. Traveling waves in compressible elastic rods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 151-167. doi: 10.3934/dcdsb.2006.6.151

[20]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]