# American Institute of Mathematical Sciences

September  2014, 19(7): 2133-2143. doi: 10.3934/dcdsb.2014.19.2133

## On the Green-Naghdi Type III heat conduction model

 1 DICATAM, Università di Brescia, Via Valotti, 9 - 25133 Brescia 2 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria 3 Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano

Received  November 2012 Revised  May 2013 Published  August 2014

In this work, we compare different constitutive models of heat flux in a rigid heat conductor. In particular, we investigate the relation between the solutions of the Green-Naghdi type III equation and those of the classical Fourier heat equation. The latter is often referred to as a limit case of the former one, as (formally) obtained by letting certain small positive parameter $\epsilon$ vanish. In presence of steady heat sources, we prove that the type III equation may be considered as a perturbation of the Fourier one only if the solutions are compared on a finite time interval of order $1/\epsilon$, whereas significant differences occur in the longterm. Moreover, for a bar with finite length and prescribed heat flux at its ends, the solutions to the type III equation do not converge asymptotically in time to the steady solutions to the corresponding Fourier model. This suggests that the Green-Naghdi type III theory is not to be viewed as comprehensive of the Fourier theory, at least when either asymptotic or stationary phenomena are involved.
Citation: Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133
##### References:
 [1] S. Bargmann, P. Steinmann and P. Jordan, On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory,, Phys. Lett. A, 372 (2008), 4418. doi: 10.1016/j.physleta.2008.04.010. Google Scholar [2] C. C. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Comm., 36 (2009), 481. doi: 10.1016/j.mechrescom.2008.11.003. Google Scholar [3] B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199. doi: 10.1007/BF01596912. Google Scholar [4] M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory,, Indiana U. Math. J., 55 (2006), 169. doi: 10.1512/iumj.2006.55.2661. Google Scholar [5] C. Giorgi, V. Pata and A. Marzocchi, Uniform attractors for a non-autonomous semilinear heat equation with memory,, Quart. Appl. Math., 58 (2000), 661. Google Scholar [6] C. Giorgi and V. Pata, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory,, Nonlinear Differential Equations and Applications, 8 (2001), 157. doi: 10.1007/PL00001443. Google Scholar [7] M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, in Evolution Equations, 50 (2002), 155. Google Scholar [8] A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics,, Proc. Roy. Soc. London Ser. A, 432 (1991), 171. doi: 10.1098/rspa.1991.0012. Google Scholar [9] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar [10] P. Podio-Guidugli, A virtual power format for thermomechanics,, Continuum Mech. Thermodyn., 20 (2009), 479. doi: 10.1007/s00161-009-0093-5. Google Scholar [11] R. Quintanilla and B. Straughan, Green-Naghdi type III viscous fluids,, Int. J. Heat Mass Tran., 55 (2012), 710. doi: 10.1016/j.ijheatmasstransfer.2011.10.039. Google Scholar [12] B. Straughan, Heat Waves,, Springer {New York}, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar [13] J. J. Vadasz, S. Govender and P. Vadasz, Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations,, Int. J. Heat Mass Tran., 48 (2005), 2673. doi: 10.1016/j.ijheatmasstransfer.2005.01.023. Google Scholar

show all references

##### References:
 [1] S. Bargmann, P. Steinmann and P. Jordan, On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory,, Phys. Lett. A, 372 (2008), 4418. doi: 10.1016/j.physleta.2008.04.010. Google Scholar [2] C. C. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Comm., 36 (2009), 481. doi: 10.1016/j.mechrescom.2008.11.003. Google Scholar [3] B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199. doi: 10.1007/BF01596912. Google Scholar [4] M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory,, Indiana U. Math. J., 55 (2006), 169. doi: 10.1512/iumj.2006.55.2661. Google Scholar [5] C. Giorgi, V. Pata and A. Marzocchi, Uniform attractors for a non-autonomous semilinear heat equation with memory,, Quart. Appl. Math., 58 (2000), 661. Google Scholar [6] C. Giorgi and V. Pata, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory,, Nonlinear Differential Equations and Applications, 8 (2001), 157. doi: 10.1007/PL00001443. Google Scholar [7] M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, in Evolution Equations, 50 (2002), 155. Google Scholar [8] A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics,, Proc. Roy. Soc. London Ser. A, 432 (1991), 171. doi: 10.1098/rspa.1991.0012. Google Scholar [9] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar [10] P. Podio-Guidugli, A virtual power format for thermomechanics,, Continuum Mech. Thermodyn., 20 (2009), 479. doi: 10.1007/s00161-009-0093-5. Google Scholar [11] R. Quintanilla and B. Straughan, Green-Naghdi type III viscous fluids,, Int. J. Heat Mass Tran., 55 (2012), 710. doi: 10.1016/j.ijheatmasstransfer.2011.10.039. Google Scholar [12] B. Straughan, Heat Waves,, Springer {New York}, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar [13] J. J. Vadasz, S. Govender and P. Vadasz, Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations,, Int. J. Heat Mass Tran., 48 (2005), 2673. doi: 10.1016/j.ijheatmasstransfer.2005.01.023. Google Scholar
 [1] Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399 [2] Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165 [3] Ivan C. Christov. Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids. Evolution Equations & Control Theory, 2016, 5 (3) : 349-365. doi: 10.3934/eect.2016008 [4] Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032 [5] Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 [6] María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem under the Wiedemann-Franz law with metallic conduction. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 901-923. doi: 10.3934/dcdsb.2007.8.901 [7] Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569 [8] Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078 [9] Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293 [10] John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 [11] M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221 [12] Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309 [13] Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 [14] Micol Amar, Daniele Andreucci, Paolo Bisegna, Roberto Gianni. Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1131-1160. doi: 10.3934/cpaa.2010.9.1131 [15] Martin Fraas, David Krejčiřík, Yehuda Pinchover. On some strong ratio limit theorems for heat kernels. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 495-509. doi: 10.3934/dcds.2010.28.495 [16] Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407 [17] Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 [18] Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827 [19] Xin Zhong. Singularity formation to the two-dimensional non-baratropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019209 [20] Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331

2018 Impact Factor: 1.008