September  2014, 19(7): 1889-1909. doi: 10.3934/dcdsb.2014.19.1889

Mathematical modeling of phase transition and separation in fluids: A unified approach

1. 

Facoltà di Ingegneria, Università e-Campus, 22060 Novedrate (CO)

2. 

DICATAM, Università di Brescia, Via Valotti, 9 - 25133 Brescia

3. 

DIBRIS, Università di Genova, Via Opera Pia 13, 16145 Genova

Received  April 2013 Revised  January 2014 Published  August 2014

A unified phase-field continuum theory is developed for transition and separation phenomena. A nonlocal formulation of the second law which involves an extra-entropy flux gives the basis of the thermodynamic approach. The phase-field is regarded as an additional variable related to some phase concentration, and its evolution is ruled by a balance equation, where flux and source terms are (unknown) constitutive functions. This evolution equation reduces to an equation of the rate-type when the flux is negligible, and it takes the form of a diffusion equation when the source term is disregarded. On this background, a general model for first-order transition and separation processes in a compressible fluid or fluid mixture is developed. Upon some simplifications, we apply it to the liquid-vapor phase change induced either by temperature or by pressure and we derive the expression of the vapor pressure curve. Taking into account the flux term, the sign of the diffusivity is discusssed.
Citation: Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889
References:
[1]

H. W. Alt and I. Pawlow, On the entropy principle of phase transition models with a conserved parameter,, Adv. Math. Sci. Appl., 6 (1996), 291. Google Scholar

[2]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilibrium Thermodyn, 34 (2009), 219. doi: 10.1515/JNETDY.2009.012. Google Scholar

[3]

A. Berti and C. Giorgi, Phase-field modeling of transition and separation phenomena in continuum thermodynamics,, AAPP Phys. Math. Nat. Sci., 91 (2013). Google Scholar

[4]

A. Berti and C. Giorgi, A phase-field model for quasi-incompressible solid-liquid transitions,, to appear in Meccanica., (). doi: 10.1007/s11012-014-9909-x. Google Scholar

[5]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293. Google Scholar

[6]

V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13. doi: 10.1016/j.physd.2007.07.009. Google Scholar

[7]

E. Bonetti and M. Frémond, A phase transition model with the entropy balance,, Math. Methods Appl. Sci., 26 (2003), 539. doi: 10.1002/mma.366. Google Scholar

[8]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer New York, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[10]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,, Arch. Rational Mech. Anal., 13 (1963), 167. doi: 10.1007/BF01262690. Google Scholar

[11]

M. Fabrizio, C. Giorgi and A. Morro, A Thermodynamic approach to non-isotermal phase-field evolution in continuum physics,, Phys. D, 214 (2006), 144. doi: 10.1016/j.physd.2006.01.002. Google Scholar

[12]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Internat. J. Engrg. Sci., 47 (2009), 821. doi: 10.1016/j.ijengsci.2009.05.010. Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, Isotropic-nematic phase transitions in liquid crystals,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 565. doi: 10.3934/dcdss.2011.4.565. Google Scholar

[14]

M. Fabrizio, C. Giorgi and A Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, Eur. J. Mech. B Fluids, 30 (2011), 281. doi: 10.1016/j.euromechflu.2010.12.003. Google Scholar

[15]

M. Frémond, Non-Smooth Thermomechanics,, Springer New york, (2002). doi: 10.1007/978-3-662-04800-9. Google Scholar

[16]

M. Frémond, Phase Changes in Mechanics,, Springer New york, (2012). Google Scholar

[17]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67. doi: 10.1007/s00032-009-0101-z. Google Scholar

[18]

A. E. Green and N. Laws, On a global entropy production inequality,, Quart. J. Mech. Appl. Math., 25 (1972), 1. doi: 10.1093/qjmam/25.1.1. Google Scholar

[19]

K. Hutter and Y. Wang, Phenomenological thermodynamics and entropy principles,, in Entropy, (2003). Google Scholar

[20]

R. A. L. Jones, Soft condensed matter,, Eur. J. Phys., 23 (2002). doi: 10.1088/0143-0807/23/6/703. Google Scholar

[21]

A. Karma and W. J. Rappel, Quantitative phase-field modelling of dendritic growth in two and three dimensions,, Phys. Rev. E, 57 (1998), 4323. doi: 10.1103/PhysRevE.57.4323. Google Scholar

[22]

A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling,, Milan J. Math., 79 (2011), 597. doi: 10.1007/s00032-011-0171-6. Google Scholar

[23]

G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours. An Introduction,, World Scientific Singapore, (1999). doi: 10.1142/3700. Google Scholar

[24]

G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts,, J. Non-Equilibrium Thermodyn, 19 (1994), 217. doi: 10.1515/jnet.1994.19.3.217. Google Scholar

[25]

A. Morro, A phase-field approach to non-isothermal transitions,, Math. Comput. Modelling, 48 (2008), 621. doi: 10.1016/j.mcm.2007.11.001. Google Scholar

[26]

I. Müller, Thermodynamics,, Pitman Boston, (1985). Google Scholar

[27]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44. doi: 10.1016/0167-2789(90)90015-H. Google Scholar

[28]

O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model,, Phys. D, 69 (1993), 107. doi: 10.1016/0167-2789(93)90183-2. Google Scholar

[29]

I. Singer-Loginova and H. M. Singer, The phase-field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008), 106501. doi: 10.1088/0034-4885/71/10/106501. Google Scholar

[30]

P. Ván, Weakly nonlocal irreversible thermodynamics,, Ann. Phys. (8), 12 (2003), 146. doi: 10.1002/andp.200310002. Google Scholar

show all references

References:
[1]

H. W. Alt and I. Pawlow, On the entropy principle of phase transition models with a conserved parameter,, Adv. Math. Sci. Appl., 6 (1996), 291. Google Scholar

[2]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilibrium Thermodyn, 34 (2009), 219. doi: 10.1515/JNETDY.2009.012. Google Scholar

[3]

A. Berti and C. Giorgi, Phase-field modeling of transition and separation phenomena in continuum thermodynamics,, AAPP Phys. Math. Nat. Sci., 91 (2013). Google Scholar

[4]

A. Berti and C. Giorgi, A phase-field model for quasi-incompressible solid-liquid transitions,, to appear in Meccanica., (). doi: 10.1007/s11012-014-9909-x. Google Scholar

[5]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293. Google Scholar

[6]

V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13. doi: 10.1016/j.physd.2007.07.009. Google Scholar

[7]

E. Bonetti and M. Frémond, A phase transition model with the entropy balance,, Math. Methods Appl. Sci., 26 (2003), 539. doi: 10.1002/mma.366. Google Scholar

[8]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer New York, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[10]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,, Arch. Rational Mech. Anal., 13 (1963), 167. doi: 10.1007/BF01262690. Google Scholar

[11]

M. Fabrizio, C. Giorgi and A. Morro, A Thermodynamic approach to non-isotermal phase-field evolution in continuum physics,, Phys. D, 214 (2006), 144. doi: 10.1016/j.physd.2006.01.002. Google Scholar

[12]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Internat. J. Engrg. Sci., 47 (2009), 821. doi: 10.1016/j.ijengsci.2009.05.010. Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, Isotropic-nematic phase transitions in liquid crystals,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 565. doi: 10.3934/dcdss.2011.4.565. Google Scholar

[14]

M. Fabrizio, C. Giorgi and A Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, Eur. J. Mech. B Fluids, 30 (2011), 281. doi: 10.1016/j.euromechflu.2010.12.003. Google Scholar

[15]

M. Frémond, Non-Smooth Thermomechanics,, Springer New york, (2002). doi: 10.1007/978-3-662-04800-9. Google Scholar

[16]

M. Frémond, Phase Changes in Mechanics,, Springer New york, (2012). Google Scholar

[17]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67. doi: 10.1007/s00032-009-0101-z. Google Scholar

[18]

A. E. Green and N. Laws, On a global entropy production inequality,, Quart. J. Mech. Appl. Math., 25 (1972), 1. doi: 10.1093/qjmam/25.1.1. Google Scholar

[19]

K. Hutter and Y. Wang, Phenomenological thermodynamics and entropy principles,, in Entropy, (2003). Google Scholar

[20]

R. A. L. Jones, Soft condensed matter,, Eur. J. Phys., 23 (2002). doi: 10.1088/0143-0807/23/6/703. Google Scholar

[21]

A. Karma and W. J. Rappel, Quantitative phase-field modelling of dendritic growth in two and three dimensions,, Phys. Rev. E, 57 (1998), 4323. doi: 10.1103/PhysRevE.57.4323. Google Scholar

[22]

A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling,, Milan J. Math., 79 (2011), 597. doi: 10.1007/s00032-011-0171-6. Google Scholar

[23]

G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours. An Introduction,, World Scientific Singapore, (1999). doi: 10.1142/3700. Google Scholar

[24]

G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts,, J. Non-Equilibrium Thermodyn, 19 (1994), 217. doi: 10.1515/jnet.1994.19.3.217. Google Scholar

[25]

A. Morro, A phase-field approach to non-isothermal transitions,, Math. Comput. Modelling, 48 (2008), 621. doi: 10.1016/j.mcm.2007.11.001. Google Scholar

[26]

I. Müller, Thermodynamics,, Pitman Boston, (1985). Google Scholar

[27]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44. doi: 10.1016/0167-2789(90)90015-H. Google Scholar

[28]

O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model,, Phys. D, 69 (1993), 107. doi: 10.1016/0167-2789(93)90183-2. Google Scholar

[29]

I. Singer-Loginova and H. M. Singer, The phase-field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008), 106501. doi: 10.1088/0034-4885/71/10/106501. Google Scholar

[30]

P. Ván, Weakly nonlocal irreversible thermodynamics,, Ann. Phys. (8), 12 (2003), 146. doi: 10.1002/andp.200310002. Google Scholar

[1]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[2]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[3]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[4]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[5]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[6]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[7]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[8]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019040

[9]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[10]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[11]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[12]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[13]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[14]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[15]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[16]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[17]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[18]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[19]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[20]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]