• Previous Article
    Permanence and extinction of a non-autonomous HIV-1 model with time delays
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells
August  2014, 19(6): 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction

1. 

Department of Differential Equations, National Technical University, Kyiv

2. 

Facultad de Ciencias, Universidad de Chile, Santiago, Chile

3. 

Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca

Received  June 2013 Revised  April 2014 Published  June 2014

In this paper, we answer the question about the existence of the minimal speed of front propagation in a delayed version of the Murray model of the Belousov-Zhabotinsky (BZ) chemical reaction. It is assumed that the key parameter $r$ of this model satisfies $0< r \leq 1$ that makes it formally monostable. By proving that the set of all admissible speeds of propagation has the form $[c_*,+\infty)$, we show here that the BZ system with $r \in (0,1]$ is actually of the monostable type (in general, $c_*$ is not linearly determined). We also establish the monotonicity of wavefronts and present the principal terms of their asymptotic expansions at infinity (in the critical case $r=1$ inclusive).
Citation: Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769
References:
[1]

A. Boumenir and V. M. Nguyen, Perron theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations,, J. Differential Equations, 244 (2008), 1551. doi: 10.1016/j.jde.2008.01.004. Google Scholar

[2]

M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems,, Clarendon Press, (1989). Google Scholar

[3]

I. R. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the Oregonator,, J. Chem. Phys., 95 (1991), 244. doi: 10.1063/1.461481. Google Scholar

[4]

J. Fang and J. Wu, Monotone travelling waves for delayed Lotka-Volterra competition systems,, Discrete Contin. Dyn. Syst., 32 (2012), 3043. doi: 10.3934/dcds.2012.32.3043. Google Scholar

[5]

R. J. Field and R. M. Noyes, Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction,, J. Am. Chem. Soc., 96 (1974), 2001. doi: 10.1021/ja00814a003. Google Scholar

[6]

S.-C. Fu, Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction,, Discrete Contin. Dyn. Syst. B, 16 (2011), 189. doi: 10.3934/dcdsb.2011.16.189. Google Scholar

[7]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Differential Equations, 23 (2011), 353. doi: 10.1007/s10884-011-9214-5. Google Scholar

[8]

J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity,, Discrete Contin. Dyn. Syst., 9 (2003), 925. doi: 10.3934/dcds.2003.9.925. Google Scholar

[9]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model,, J. Dynam. Differential Equations, 22 (2010), 285. doi: 10.1007/s10884-010-9159-0. Google Scholar

[10]

W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Differential Equations, 251 (2011), 1549. doi: 10.1016/j.jde.2011.05.012. Google Scholar

[11]

Ya. I. Kanel, The existence of a solution of traveling wave type for the Belousov-Zhabotinskii system of equations. II,, Siberian Math. J., 32 (1991), 390. Google Scholar

[12]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759. doi: 10.1088/0951-7715/24/6/004. Google Scholar

[13]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[14]

G. Lin and W.-T. Li, Travelling wavefronts of Belousov-Zhabotinskii system with diffusion and delay,, Appl. Math. Letters, 22 (2009), 341. doi: 10.1016/j.aml.2008.04.006. Google Scholar

[15]

G. Lin and S. Ruan, Traveling Wave Solutions for Delayed Reaction-Diffusion Systems and Applications to Lotka-Volterra Competition-Diffusion Models with Distributed Delays,, J. Dynam. Differential Equations, (2014). doi: 10.1007/s10884-014-9355-4. Google Scholar

[16]

G. Lv and M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra systems,, Nonlinear Anal. Real World Appl., 11 (2010), 1323. doi: 10.1016/j.nonrwa.2009.02.020. Google Scholar

[17]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846. Google Scholar

[18]

J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,, J. Dynam. Differential Equations, 11 (1999), 1. doi: 10.1023/A:1021889401235. Google Scholar

[19]

J. D. Murray, On traveling wave solutions in a model for Belousov-Zhabotinskii reaction,, J. Theor. Biol., 56 (1976), 329. doi: 10.1016/S0022-5193(76)80078-1. Google Scholar

[20]

J. D. Murray, Lectures on Nonlinear Differential Equations, Models in biology,, Clarendon Press, (1977). Google Scholar

[21]

M. R. Roussel, The use of delay differential equations in chemical kinetics,, J. Phys. Chem., 100 (1996), 8323. doi: 10.1021/jp9600672. Google Scholar

[22]

E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction,, Discrete Contin. Dyn. Syst., 33 (2013), 2169. doi: 10.3934/dcds.2013.33.2169. Google Scholar

[23]

E. Trofimchuk, M. Pinto and S. Trofimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction,, J. Differential Equations, 254 (2013), 3690. doi: 10.1016/j.jde.2013.02.005. Google Scholar

[24]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems,, Amer. Math. Soc., (1994). Google Scholar

[25]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Differential Equations, 13 (2001), 651. doi: 10.1023/A:1016690424892. Google Scholar

[26]

Q. Ye and M. Wang, Traveling wave front solutions of Noyes-Field System for Belousov-Zhabotinskii reaction,, Nonlinear Anal., 11 (1987), 1289. doi: 10.1016/0362-546X(87)90046-0. Google Scholar

show all references

References:
[1]

A. Boumenir and V. M. Nguyen, Perron theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations,, J. Differential Equations, 244 (2008), 1551. doi: 10.1016/j.jde.2008.01.004. Google Scholar

[2]

M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems,, Clarendon Press, (1989). Google Scholar

[3]

I. R. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the Oregonator,, J. Chem. Phys., 95 (1991), 244. doi: 10.1063/1.461481. Google Scholar

[4]

J. Fang and J. Wu, Monotone travelling waves for delayed Lotka-Volterra competition systems,, Discrete Contin. Dyn. Syst., 32 (2012), 3043. doi: 10.3934/dcds.2012.32.3043. Google Scholar

[5]

R. J. Field and R. M. Noyes, Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction,, J. Am. Chem. Soc., 96 (1974), 2001. doi: 10.1021/ja00814a003. Google Scholar

[6]

S.-C. Fu, Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction,, Discrete Contin. Dyn. Syst. B, 16 (2011), 189. doi: 10.3934/dcdsb.2011.16.189. Google Scholar

[7]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Differential Equations, 23 (2011), 353. doi: 10.1007/s10884-011-9214-5. Google Scholar

[8]

J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity,, Discrete Contin. Dyn. Syst., 9 (2003), 925. doi: 10.3934/dcds.2003.9.925. Google Scholar

[9]

W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model,, J. Dynam. Differential Equations, 22 (2010), 285. doi: 10.1007/s10884-010-9159-0. Google Scholar

[10]

W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Differential Equations, 251 (2011), 1549. doi: 10.1016/j.jde.2011.05.012. Google Scholar

[11]

Ya. I. Kanel, The existence of a solution of traveling wave type for the Belousov-Zhabotinskii system of equations. II,, Siberian Math. J., 32 (1991), 390. Google Scholar

[12]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759. doi: 10.1088/0951-7715/24/6/004. Google Scholar

[13]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[14]

G. Lin and W.-T. Li, Travelling wavefronts of Belousov-Zhabotinskii system with diffusion and delay,, Appl. Math. Letters, 22 (2009), 341. doi: 10.1016/j.aml.2008.04.006. Google Scholar

[15]

G. Lin and S. Ruan, Traveling Wave Solutions for Delayed Reaction-Diffusion Systems and Applications to Lotka-Volterra Competition-Diffusion Models with Distributed Delays,, J. Dynam. Differential Equations, (2014). doi: 10.1007/s10884-014-9355-4. Google Scholar

[16]

G. Lv and M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra systems,, Nonlinear Anal. Real World Appl., 11 (2010), 1323. doi: 10.1016/j.nonrwa.2009.02.020. Google Scholar

[17]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846. Google Scholar

[18]

J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,, J. Dynam. Differential Equations, 11 (1999), 1. doi: 10.1023/A:1021889401235. Google Scholar

[19]

J. D. Murray, On traveling wave solutions in a model for Belousov-Zhabotinskii reaction,, J. Theor. Biol., 56 (1976), 329. doi: 10.1016/S0022-5193(76)80078-1. Google Scholar

[20]

J. D. Murray, Lectures on Nonlinear Differential Equations, Models in biology,, Clarendon Press, (1977). Google Scholar

[21]

M. R. Roussel, The use of delay differential equations in chemical kinetics,, J. Phys. Chem., 100 (1996), 8323. doi: 10.1021/jp9600672. Google Scholar

[22]

E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction,, Discrete Contin. Dyn. Syst., 33 (2013), 2169. doi: 10.3934/dcds.2013.33.2169. Google Scholar

[23]

E. Trofimchuk, M. Pinto and S. Trofimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction,, J. Differential Equations, 254 (2013), 3690. doi: 10.1016/j.jde.2013.02.005. Google Scholar

[24]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems,, Amer. Math. Soc., (1994). Google Scholar

[25]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Differential Equations, 13 (2001), 651. doi: 10.1023/A:1016690424892. Google Scholar

[26]

Q. Ye and M. Wang, Traveling wave front solutions of Noyes-Field System for Belousov-Zhabotinskii reaction,, Nonlinear Anal., 11 (1987), 1289. doi: 10.1016/0362-546X(87)90046-0. Google Scholar

[1]

Chikahiro Egami. Mechanism for the color transition of the Belousov-Zhabotinsky reaction catalyzed by cerium ions and ferroin. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2527-2544. doi: 10.3934/dcdsb.2018061

[2]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[3]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[4]

Atsushi Yagi, Koichi Osaki, Tatsunari Sakurai. Exponential attractors for Belousov-Zhabotinskii reaction model. Conference Publications, 2009, 2009 (Special) : 846-856. doi: 10.3934/proc.2009.2009.846

[5]

Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051

[6]

Kazuo Aoki, François Golse. On the speed of approach to equilibrium for a collisionless gas. Kinetic & Related Models, 2011, 4 (1) : 87-107. doi: 10.3934/krm.2011.4.87

[7]

Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081

[8]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[9]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[10]

Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27

[11]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[12]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[13]

A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747

[14]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. Pushed traveling fronts in monostable equations with monotone delayed reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2169-2187. doi: 10.3934/dcds.2013.33.2169

[15]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[16]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[17]

Shi-Liang Wu, Cheng-Hsiung Hsu. Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2987-3022. doi: 10.3934/dcds.2018128

[18]

Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104

[19]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[20]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

[Back to Top]