• Previous Article
    Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors
  • DCDS-B Home
  • This Issue
  • Next Article
    Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations
August  2014, 19(6): 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

The linear hyperbolic initial and boundary value problems in a domain with corners

1. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Rawles Hall, Bloomington, Indiana 47405

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Bloomington, Indiana 47405

Received  October 2013 Revised  March 2014 Published  June 2014

In this article, we consider linear hyperbolic Initial and Boundary Value Problems (IBVP) in a rectangle (or possibly curvilinear polygonal domains) in both the constant and variable coefficients cases. We use semigroup method instead of Fourier analysis to achieve the well-posedness of the linear hyperbolic system, and we find by diagonalization that there are only two elementary modes in the system which we call hyperbolic and elliptic modes. The hyperbolic system in consideration is either symmetric or Friedrichs-symmetrizable.
Citation: Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627
References:
[1]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations,, Oxford University Press, (2007). Google Scholar

[2]

P. J. Dellar, Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics,, Physics of Plasmas, 9 (2002), 1130. doi: 10.1063/1.1463415. Google Scholar

[3]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Math., (2000). Google Scholar

[4]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator,, Trans. Amer. Math. Soc., 55 (1944), 132. doi: 10.1090/S0002-9947-1944-0009701-0. Google Scholar

[5]

P. A. Gilman, Magnetohydrodynamic "shallow water" equations for the solar tachocline,, Astrophys. J. Lett., 544 (2000). doi: 10.1086/317291. Google Scholar

[6]

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws,, Applied Mathematical Sciences, (1996). doi: 10.1007/978-1-4612-0713-9. Google Scholar

[7]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985). doi: 10.1137/1.9781611972030. Google Scholar

[8]

L. Hörmander, Weak and Strong Extensions of Differential Operators,, Comm. Pure Appl. Math., 14 (1961), 371. Google Scholar

[9]

R. A. Horn and C. R. Johnson, Matrix Analysis,, Second ed., (2013). Google Scholar

[10]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups,, American Mathematical Society, (1974). Google Scholar

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: Boundary conditions and well-posedness,, Archive for Rational Mechanics and Analysis, 211 (2014), 1027. doi: 10.1007/s00205-013-0702-0. Google Scholar

[12]

J. H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics,, Vol. 1. Teichmüller theory, (2006). Google Scholar

[13]

I. A. K. Kupka and S. J. Osher, On the wave equation in a multi-dimensional corner,, Comm. Pure Appl. Math., 24 (1971), 381. doi: 10.1002/cpa.3160240304. Google Scholar

[14]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, Comm. Pure Appl. Math., 23 (1970), 277. doi: 10.1002/cpa.3160230304. Google Scholar

[15]

K. Kojima and M. Taniguchi, Mixed problem for hyperbolic equations in a domain with a corner,, Funkcialaj Ekvacioj, 23 (1980), 171. Google Scholar

[16]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2,, Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[17]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I,, Springer-Verlag, (1972). Google Scholar

[18]

J. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type,, Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A, 668 (1970), 592. Google Scholar

[19]

J. Li and J. Zha, Linear Algebra,, Univ. of Sci. & Tech. of China Press, (1988). Google Scholar

[20]

J. Oliger and A. Sundström, Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics,, SIAM J. Appl. Math., 35 (1978), 419. doi: 10.1137/0135035. Google Scholar

[21]

S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I,, Trans. Amer. Math. Soc., 176 (1973), 141. doi: 10.1090/S0002-9947-1973-0320539-5. Google Scholar

[22]

_______, Initial-boundary value problems for hyperbolic systems in regions with corners. II,, Trans. Amer. Math. Soc., 198 (1974), 155. doi: 10.1090/S0002-9947-1974-0352715-0. Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[24]

A. Rousseau, R. Temam and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case,, J. Math. Pures Appl., 89 (2008), 297. doi: 10.1016/j.matpur.2007.12.001. Google Scholar

[25]

W. Rudin, Functional Analysis,, Second ed., (1991). Google Scholar

[26]

L. Sarason, Hyperbolic and other symmetrizable systems in regions with corners and edges,, Indiana Univ. Math. J., 26 (1977), 1. doi: 10.1512/iumj.1977.26.26001. Google Scholar

[27]

B. V. Shabat, On a generalized solution to a system of equations in partial derivatives,, Math. Sb., 17 (1945), 193. Google Scholar

[28]

H. De Sterck, Hyperbolic theory of the "shallow water" magnetohydrodynamics equations,, Physics of Plasmas, 8 (2001), 3293. doi: 10.1063/1.1379045. Google Scholar

[29]

M. Taniguchi, Mixed problem for wave equation in the domain with a corner,, Funkcialaj Ekvacioj, 21 (1978), 249. Google Scholar

[30]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001). doi: 10.1115/1.3424338. Google Scholar

[31]

R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations,, J. Atmospheric Sci., 60 (2003), 2647. doi: 10.1175/1520-0469(2003)060<2647:OBCFTP>2.0.CO;2. Google Scholar

[32]

F. Uhlig, Simultaneous block diagonalization of two real symmetric matrices,, Linear Algebra and its Applications, 7 (1973), 281. doi: 10.1016/S0024-3795(73)80001-1. Google Scholar

[33]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962). Google Scholar

[34]

T. Warner, R. Peterson and R. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction,, Bull. Amer. Meteor. Soc., 78 (1997), 2599. doi: 10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2. Google Scholar

[35]

K. Yosida, Functional Analysis,, Sixth ed., (1995). Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations,, Oxford University Press, (2007). Google Scholar

[2]

P. J. Dellar, Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics,, Physics of Plasmas, 9 (2002), 1130. doi: 10.1063/1.1463415. Google Scholar

[3]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Math., (2000). Google Scholar

[4]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator,, Trans. Amer. Math. Soc., 55 (1944), 132. doi: 10.1090/S0002-9947-1944-0009701-0. Google Scholar

[5]

P. A. Gilman, Magnetohydrodynamic "shallow water" equations for the solar tachocline,, Astrophys. J. Lett., 544 (2000). doi: 10.1086/317291. Google Scholar

[6]

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws,, Applied Mathematical Sciences, (1996). doi: 10.1007/978-1-4612-0713-9. Google Scholar

[7]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985). doi: 10.1137/1.9781611972030. Google Scholar

[8]

L. Hörmander, Weak and Strong Extensions of Differential Operators,, Comm. Pure Appl. Math., 14 (1961), 371. Google Scholar

[9]

R. A. Horn and C. R. Johnson, Matrix Analysis,, Second ed., (2013). Google Scholar

[10]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups,, American Mathematical Society, (1974). Google Scholar

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: Boundary conditions and well-posedness,, Archive for Rational Mechanics and Analysis, 211 (2014), 1027. doi: 10.1007/s00205-013-0702-0. Google Scholar

[12]

J. H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics,, Vol. 1. Teichmüller theory, (2006). Google Scholar

[13]

I. A. K. Kupka and S. J. Osher, On the wave equation in a multi-dimensional corner,, Comm. Pure Appl. Math., 24 (1971), 381. doi: 10.1002/cpa.3160240304. Google Scholar

[14]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, Comm. Pure Appl. Math., 23 (1970), 277. doi: 10.1002/cpa.3160230304. Google Scholar

[15]

K. Kojima and M. Taniguchi, Mixed problem for hyperbolic equations in a domain with a corner,, Funkcialaj Ekvacioj, 23 (1980), 171. Google Scholar

[16]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2,, Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[17]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I,, Springer-Verlag, (1972). Google Scholar

[18]

J. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type,, Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A, 668 (1970), 592. Google Scholar

[19]

J. Li and J. Zha, Linear Algebra,, Univ. of Sci. & Tech. of China Press, (1988). Google Scholar

[20]

J. Oliger and A. Sundström, Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics,, SIAM J. Appl. Math., 35 (1978), 419. doi: 10.1137/0135035. Google Scholar

[21]

S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I,, Trans. Amer. Math. Soc., 176 (1973), 141. doi: 10.1090/S0002-9947-1973-0320539-5. Google Scholar

[22]

_______, Initial-boundary value problems for hyperbolic systems in regions with corners. II,, Trans. Amer. Math. Soc., 198 (1974), 155. doi: 10.1090/S0002-9947-1974-0352715-0. Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[24]

A. Rousseau, R. Temam and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case,, J. Math. Pures Appl., 89 (2008), 297. doi: 10.1016/j.matpur.2007.12.001. Google Scholar

[25]

W. Rudin, Functional Analysis,, Second ed., (1991). Google Scholar

[26]

L. Sarason, Hyperbolic and other symmetrizable systems in regions with corners and edges,, Indiana Univ. Math. J., 26 (1977), 1. doi: 10.1512/iumj.1977.26.26001. Google Scholar

[27]

B. V. Shabat, On a generalized solution to a system of equations in partial derivatives,, Math. Sb., 17 (1945), 193. Google Scholar

[28]

H. De Sterck, Hyperbolic theory of the "shallow water" magnetohydrodynamics equations,, Physics of Plasmas, 8 (2001), 3293. doi: 10.1063/1.1379045. Google Scholar

[29]

M. Taniguchi, Mixed problem for wave equation in the domain with a corner,, Funkcialaj Ekvacioj, 21 (1978), 249. Google Scholar

[30]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001). doi: 10.1115/1.3424338. Google Scholar

[31]

R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations,, J. Atmospheric Sci., 60 (2003), 2647. doi: 10.1175/1520-0469(2003)060<2647:OBCFTP>2.0.CO;2. Google Scholar

[32]

F. Uhlig, Simultaneous block diagonalization of two real symmetric matrices,, Linear Algebra and its Applications, 7 (1973), 281. doi: 10.1016/S0024-3795(73)80001-1. Google Scholar

[33]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962). Google Scholar

[34]

T. Warner, R. Peterson and R. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction,, Bull. Amer. Meteor. Soc., 78 (1997), 2599. doi: 10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2. Google Scholar

[35]

K. Yosida, Functional Analysis,, Sixth ed., (1995). Google Scholar

[1]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[2]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[3]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[4]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[5]

Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065

[6]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[7]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

[8]

Jitao Liu. On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1179-1191. doi: 10.3934/cpaa.2016.15.1179

[9]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[10]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[11]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[12]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[13]

Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161

[14]

Kai Yan, Zhaoyang Yin. On the initial value problem for higher dimensional Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1327-1358. doi: 10.3934/dcds.2015.35.1327

[15]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[16]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[17]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[18]

Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107

[19]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[20]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]