August  2014, 19(6): 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint

1. 

Dep. Matemáticas, Estadística y Computación, Universidad de Cantabria, Avda. de los Castros, s/n, 39005 Santander, Spain, Spain

Received  August 2013 Revised  February 2014 Published  June 2014

We study three optimal control problems associated with Gompertz-type differential equations, including bound control and integral constraints. These problems can be interpreted in terms of planning anticancer therapies. Existence of optimal controls is proved and all their possible structures are determined in detail, by using the Pontryagin's Maximum Principle. The influence of the pharmacokinetics and pharmacodynamics variants, together with the integral constraint, is analyzed. Moreover, the numerical results of some illustrative examples and our conclusions are presented.
Citation: Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563
References:
[1]

L. Cesari, Optimization-Theory and Applications,, Springer-Verlag, (1983). doi: 10.1007/978-1-4613-8165-5.

[2]

J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments,, Math. Model. Nat. Phenom., 4 (2009), 12. doi: 10.1051/mmnp/20094302.

[3]

C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,, Optimal Control Appl. Methods, 32 (2011), 476. doi: 10.1002/oca.957.

[4]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004.

[5]

L. C. Evans, Partial Differential Equations,, AMS, (1998).

[6]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954. doi: 10.1137/S0036139902413489.

[7]

P. Hartman, Ordinary Differential Equations,, Birkhäuser, (1982).

[8]

W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy,, Appl. Math. Comput., 217 (2010), 1117. doi: 10.1016/j.amc.2010.05.008.

[9]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307. doi: 10.3934/mbe.2011.8.307.

[11]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models,, Math. Biosci. Eng., 2 (2005), 561. doi: 10.3934/mbe.2005.2.561.

[12]

U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Math. Biosci., 206 (2007), 320. doi: 10.1016/j.mbs.2005.03.013.

[13]

R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994). doi: 10.1142/9789812832542.

[14]

J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit,, Math. Biosci., 100 (1990), 49. doi: 10.1016/0025-5564(90)90047-3.

[15]

A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method,, ACM Trans. Math. Software, 37 (2010), 1. doi: 10.1145/1731022.1731032.

[16]

G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317.

[17]

G. W. Swan, Role of optimal control theory in cancer chemotherapy,, Math. Biosci., 101 (1990), 237. doi: 10.1016/0025-5564(90)90021-P.

[18]

A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy,, Eur. J. Pharmacol., 625 (2009), 108. doi: 10.1016/j.ejphar.2009.08.041.

show all references

References:
[1]

L. Cesari, Optimization-Theory and Applications,, Springer-Verlag, (1983). doi: 10.1007/978-1-4613-8165-5.

[2]

J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments,, Math. Model. Nat. Phenom., 4 (2009), 12. doi: 10.1051/mmnp/20094302.

[3]

C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,, Optimal Control Appl. Methods, 32 (2011), 476. doi: 10.1002/oca.957.

[4]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004.

[5]

L. C. Evans, Partial Differential Equations,, AMS, (1998).

[6]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954. doi: 10.1137/S0036139902413489.

[7]

P. Hartman, Ordinary Differential Equations,, Birkhäuser, (1982).

[8]

W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy,, Appl. Math. Comput., 217 (2010), 1117. doi: 10.1016/j.amc.2010.05.008.

[9]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307. doi: 10.3934/mbe.2011.8.307.

[11]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models,, Math. Biosci. Eng., 2 (2005), 561. doi: 10.3934/mbe.2005.2.561.

[12]

U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Math. Biosci., 206 (2007), 320. doi: 10.1016/j.mbs.2005.03.013.

[13]

R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994). doi: 10.1142/9789812832542.

[14]

J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit,, Math. Biosci., 100 (1990), 49. doi: 10.1016/0025-5564(90)90047-3.

[15]

A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method,, ACM Trans. Math. Software, 37 (2010), 1. doi: 10.1145/1731022.1731032.

[16]

G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317.

[17]

G. W. Swan, Role of optimal control theory in cancer chemotherapy,, Math. Biosci., 101 (1990), 237. doi: 10.1016/0025-5564(90)90021-P.

[18]

A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy,, Eur. J. Pharmacol., 625 (2009), 108. doi: 10.1016/j.ejphar.2009.08.041.

[1]

Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100

[2]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[3]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[4]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[5]

Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803

[6]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[7]

Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007

[8]

Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451-467. doi: 10.3934/mbe.2009.6.451

[9]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[10]

Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031

[11]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[12]

Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066

[13]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[14]

Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981

[15]

Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95

[16]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[17]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[18]

Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer. Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1895-1915. doi: 10.3934/dcdsb.2016028

[19]

Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082

[20]

Luis A. Fernández, Cecilia Pola. Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2577-2612. doi: 10.3934/dcdsb.2018266

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]